// https://github.com/vasturiano/d3-binarytree v0.2.0 Copyright 2021 Vasco Asturiano (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {})); }(this, (function (exports) { 'use strict'; function tree_add(d) { var x = +this._x.call(null, d); return add(this.cover(x), x, d); } function add(tree, x, d) { if (isNaN(x)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, x1 = tree._x1, xm, xp, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (parent = node, !(node = node[i = +right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); if (x === xp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(2) : tree._root = new Array(2); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; } while ((i = +right) === (j = +(xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var i, n = data.length, x, xz = new Array(n), x0 = Infinity, x1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, data[i]))) continue; xz[i] = x; if (x < x0) x0 = x; if (x > x1) x1 = x; } // If there were no (valid) points, abort. if (x0 > x1) return this; // Expand the tree to cover the new points. this.cover(x0).cover(x1); // Add the new points. for (i = 0; i < n; ++i) { add(this, xz[i], data[i]); } return this; } function tree_cover(x) { if (isNaN(x = +x)) return this; // ignore invalid points var x0 = this._x0, x1 = this._x1; // If the binarytree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing half boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1) { i = +(x < x0); parent = new Array(2), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z; break; case 1: x0 = x1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._x1 = x1; return this; } function tree_data() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent(_) { return arguments.length ? this.cover(+_[0][0]).cover(+_[1][0]) : isNaN(this._x0) ? undefined : [[this._x0], [this._x1]]; } function Half(node, x0, x1) { this.node = node; this.x0 = x0; this.x1 = x1; } function tree_find(x, radius) { var data, x0 = this._x0, x1, x2, x3 = this._x1, halves = [], node = this._root, q, i; if (node) halves.push(new Half(node, x0, x3)); if (radius == null) radius = Infinity; else { x0 = x - radius; x3 = x + radius; } while (q = halves.pop()) { // Stop searching if this half can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (x2 = q.x1) < x0) continue; // Bisect the current half. if (node.length) { var xm = (x1 + x2) / 2; halves.push( new Half(node[1], xm, x2), new Half(node[0], x1, xm) ); // Visit the closest half first. if (i = +(x >= xm)) { q = halves[halves.length - 1]; halves[halves.length - 1] = halves[halves.length - 1 - i]; halves[halves.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var d = Math.abs(x - +this._x.call(null, node.data)); if (d < radius) { radius = d; x0 = x - d; x3 = x + d; data = node.data; } } } return data; } function tree_remove(d) { if (isNaN(x = +this._x.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, x1 = this._x1, x, xm, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (!(parent = node, node = node[i = +right])) return this; if (!node.length) break; if (parent[(i + 1) & 1]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1]) && node === (parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root() { return this._root; } function tree_size() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit(callback) { var halves = [], q, node = this._root, child, x0, x1; if (node) halves.push(new Half(node, this._x0, this._x1)); while (q = halves.pop()) { if (!callback(node = q.node, x0 = q.x0, x1 = q.x1) && node.length) { var xm = (x0 + x1) / 2; if (child = node[1]) halves.push(new Half(child, xm, x1)); if (child = node[0]) halves.push(new Half(child, x0, xm)); } } return this; } function tree_visitAfter(callback) { var halves = [], next = [], q; if (this._root) halves.push(new Half(this._root, this._x0, this._x1)); while (q = halves.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, x1 = q.x1, xm = (x0 + x1) / 2; if (child = node[0]) halves.push(new Half(child, x0, xm)); if (child = node[1]) halves.push(new Half(child, xm, x1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.x1); } return this; } function defaultX(d) { return d[0]; } function tree_x(_) { return arguments.length ? (this._x = _, this) : this._x; } function binarytree(nodes, x) { var tree = new Binarytree(x == null ? defaultX : x, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Binarytree(x, x0, x1) { this._x = x; this._x0 = x0; this._x1 = x1; this._root = undefined; } function leaf_copy(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto = binarytree.prototype = Binarytree.prototype; treeProto.copy = function() { var copy = new Binarytree(this._x, this._x0, this._x1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{source: node, target: copy._root = new Array(2)}]; while (node = nodes.pop()) { for (var i = 0; i < 2; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(2)}); else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; exports.binarytree = binarytree; Object.defineProperty(exports, '__esModule', { value: true }); })));