// Version 1.39.1 three-forcegraph - https://github.com/vasturiano/three-forcegraph (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory(require('three')) : typeof define === 'function' && define.amd ? define(['three'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.ThreeForceGraph = factory(global.THREE)); }(this, (function (three$2) { 'use strict'; function ownKeys$1(object, enumerableOnly) { var keys = Object.keys(object); if (Object.getOwnPropertySymbols) { var symbols = Object.getOwnPropertySymbols(object); if (enumerableOnly) { symbols = symbols.filter(function (sym) { return Object.getOwnPropertyDescriptor(object, sym).enumerable; }); } keys.push.apply(keys, symbols); } return keys; } function _objectSpread2$1(target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i] != null ? arguments[i] : {}; if (i % 2) { ownKeys$1(Object(source), true).forEach(function (key) { _defineProperty$1(target, key, source[key]); }); } else if (Object.getOwnPropertyDescriptors) { Object.defineProperties(target, Object.getOwnPropertyDescriptors(source)); } else { ownKeys$1(Object(source)).forEach(function (key) { Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key)); }); } } return target; } function _typeof(obj) { "@babel/helpers - typeof"; if (typeof Symbol === "function" && typeof Symbol.iterator === "symbol") { _typeof = function (obj) { return typeof obj; }; } else { _typeof = function (obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; } return _typeof(obj); } function _classCallCheck$1(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperty$1(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); if (superClass) _setPrototypeOf(subClass, superClass); } function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); } function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); } function _isNativeReflectConstruct() { if (typeof Reflect === "undefined" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === "function") return true; try { Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); return true; } catch (e) { return false; } } function _construct(Parent, args, Class) { if (_isNativeReflectConstruct()) { _construct = Reflect.construct; } else { _construct = function _construct(Parent, args, Class) { var a = [null]; a.push.apply(a, args); var Constructor = Function.bind.apply(Parent, a); var instance = new Constructor(); if (Class) _setPrototypeOf(instance, Class.prototype); return instance; }; } return _construct.apply(null, arguments); } function _objectWithoutPropertiesLoose$2(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _objectWithoutProperties$2(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose$2(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; } function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; } function _possibleConstructorReturn(self, call) { if (call && (typeof call === "object" || typeof call === "function")) { return call; } return _assertThisInitialized(self); } function _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; } function _slicedToArray$3(arr, i) { return _arrayWithHoles$3(arr) || _iterableToArrayLimit$3(arr, i) || _unsupportedIterableToArray$3(arr, i) || _nonIterableRest$3(); } function _toConsumableArray$2(arr) { return _arrayWithoutHoles$2(arr) || _iterableToArray$2(arr) || _unsupportedIterableToArray$3(arr) || _nonIterableSpread$2(); } function _arrayWithoutHoles$2(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$3(arr); } function _arrayWithHoles$3(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray$2(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _iterableToArrayLimit$3(arr, i) { var _i = arr == null ? null : typeof Symbol !== "undefined" && arr[Symbol.iterator] || arr["@@iterator"]; if (_i == null) return; var _arr = []; var _n = true; var _d = false; var _s, _e; try { for (_i = _i.call(arr); !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"] != null) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } function _unsupportedIterableToArray$3(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$3(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$3(o, minLen); } function _arrayLikeToArray$3(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$2() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest$3() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function d3ForceCenter(x, y, z) { var nodes, strength = 1; if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force() { var i, n = nodes.length, node, sx = 0, sy = 0, sz = 0; for (i = 0; i < n; ++i) { node = nodes[i], sx += node.x || 0, sy += node.y || 0, sz += node.z || 0; } for (sx = (sx / n - x) * strength, sy = (sy / n - y) * strength, sz = (sz / n - z) * strength, i = 0; i < n; ++i) { node = nodes[i]; if (sx) { node.x -= sx; } if (sy) { node.y -= sy; } if (sz) { node.z -= sz; } } } force.initialize = function(_) { nodes = _; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; force.z = function(_) { return arguments.length ? (z = +_, force) : z; }; force.strength = function(_) { return arguments.length ? (strength = +_, force) : strength; }; return force; } function tree_add$2(d) { var x = +this._x.call(null, d); return add$2(this.cover(x), x, d); } function add$2(tree, x, d) { if (isNaN(x)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, x1 = tree._x1, xm, xp, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (parent = node, !(node = node[i = +right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); if (x === xp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(2) : tree._root = new Array(2); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; } while ((i = +right) === (j = +(xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll$2(data) { var i, n = data.length, x, xz = new Array(n), x0 = Infinity, x1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, data[i]))) continue; xz[i] = x; if (x < x0) x0 = x; if (x > x1) x1 = x; } // If there were no (valid) points, abort. if (x0 > x1) return this; // Expand the tree to cover the new points. this.cover(x0).cover(x1); // Add the new points. for (i = 0; i < n; ++i) { add$2(this, xz[i], data[i]); } return this; } function tree_cover$2(x) { if (isNaN(x = +x)) return this; // ignore invalid points var x0 = this._x0, x1 = this._x1; // If the binarytree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing half boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1) { i = +(x < x0); parent = new Array(2), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z; break; case 1: x0 = x1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._x1 = x1; return this; } function tree_data$2() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent$2(_) { return arguments.length ? this.cover(+_[0][0]).cover(+_[1][0]) : isNaN(this._x0) ? undefined : [[this._x0], [this._x1]]; } function Half(node, x0, x1) { this.node = node; this.x0 = x0; this.x1 = x1; } function tree_find$2(x, radius) { var data, x0 = this._x0, x1, x2, x3 = this._x1, halves = [], node = this._root, q, i; if (node) halves.push(new Half(node, x0, x3)); if (radius == null) radius = Infinity; else { x0 = x - radius; x3 = x + radius; } while (q = halves.pop()) { // Stop searching if this half can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (x2 = q.x1) < x0) continue; // Bisect the current half. if (node.length) { var xm = (x1 + x2) / 2; halves.push( new Half(node[1], xm, x2), new Half(node[0], x1, xm) ); // Visit the closest half first. if (i = +(x >= xm)) { q = halves[halves.length - 1]; halves[halves.length - 1] = halves[halves.length - 1 - i]; halves[halves.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var d = Math.abs(x - +this._x.call(null, node.data)); if (d < radius) { radius = d; x0 = x - d; x3 = x + d; data = node.data; } } } return data; } function tree_remove$2(d) { if (isNaN(x = +this._x.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, x1 = this._x1, x, xm, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (!(parent = node, node = node[i = +right])) return this; if (!node.length) break; if (parent[(i + 1) & 1]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1]) && node === (parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll$2(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root$2() { return this._root; } function tree_size$2() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit$2(callback) { var halves = [], q, node = this._root, child, x0, x1; if (node) halves.push(new Half(node, this._x0, this._x1)); while (q = halves.pop()) { if (!callback(node = q.node, x0 = q.x0, x1 = q.x1) && node.length) { var xm = (x0 + x1) / 2; if (child = node[1]) halves.push(new Half(child, xm, x1)); if (child = node[0]) halves.push(new Half(child, x0, xm)); } } return this; } function tree_visitAfter$2(callback) { var halves = [], next = [], q; if (this._root) halves.push(new Half(this._root, this._x0, this._x1)); while (q = halves.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, x1 = q.x1, xm = (x0 + x1) / 2; if (child = node[0]) halves.push(new Half(child, x0, xm)); if (child = node[1]) halves.push(new Half(child, xm, x1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.x1); } return this; } function defaultX$2(d) { return d[0]; } function tree_x$2(_) { return arguments.length ? (this._x = _, this) : this._x; } function binarytree(nodes, x) { var tree = new Binarytree(x == null ? defaultX$2 : x, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Binarytree(x, x0, x1) { this._x = x; this._x0 = x0; this._x1 = x1; this._root = undefined; } function leaf_copy$2(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto$2 = binarytree.prototype = Binarytree.prototype; treeProto$2.copy = function() { var copy = new Binarytree(this._x, this._x0, this._x1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy$2(node), copy; nodes = [{source: node, target: copy._root = new Array(2)}]; while (node = nodes.pop()) { for (var i = 0; i < 2; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(2)}); else node.target[i] = leaf_copy$2(child); } } } return copy; }; treeProto$2.add = tree_add$2; treeProto$2.addAll = addAll$2; treeProto$2.cover = tree_cover$2; treeProto$2.data = tree_data$2; treeProto$2.extent = tree_extent$2; treeProto$2.find = tree_find$2; treeProto$2.remove = tree_remove$2; treeProto$2.removeAll = removeAll$2; treeProto$2.root = tree_root$2; treeProto$2.size = tree_size$2; treeProto$2.visit = tree_visit$2; treeProto$2.visitAfter = tree_visitAfter$2; treeProto$2.x = tree_x$2; function tree_add$1(d) { const x = +this._x.call(null, d), y = +this._y.call(null, d); return add$1(this.cover(x, y), x, y, d); } function add$1(tree, x, y, d) { if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, x1 = tree._x1, y1 = tree._y1, xm, ym, xp, yp, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll$1(data) { var d, i, n = data.length, x, y, xz = new Array(n), yz = new Array(n), x0 = Infinity, y0 = Infinity, x1 = -Infinity, y1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue; xz[i] = x; yz[i] = y; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1) return this; // Expand the tree to cover the new points. this.cover(x0, y0).cover(x1, y1); // Add the new points. for (i = 0; i < n; ++i) { add$1(this, xz[i], yz[i], data[i]); } return this; } function tree_cover$1(x, y) { if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1; // If the quadtree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing quadrant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1) { i = (y < y0) << 1 | (x < x0); parent = new Array(4), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z, y1 = y0 + z; break; case 1: x0 = x1 - z, y1 = y0 + z; break; case 2: x1 = x0 + z, y0 = y1 - z; break; case 3: x0 = x1 - z, y0 = y1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; return this; } function tree_data$1() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent$1(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]]; } function Quad(node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; } function tree_find$1(x, y, radius) { var data, x0 = this._x0, y0 = this._y0, x1, y1, x2, y2, x3 = this._x1, y3 = this._y1, quads = [], node = this._root, q, i; if (node) quads.push(new Quad(node, x0, y0, x3, y3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius; x3 = x + radius, y3 = y + radius; radius *= radius; } while (q = quads.pop()) { // Stop searching if this quadrant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0) continue; // Bisect the current quadrant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2; quads.push( new Quad(node[3], xm, ym, x2, y2), new Quad(node[2], x1, ym, xm, y2), new Quad(node[1], xm, y1, x2, ym), new Quad(node[0], x1, y1, xm, ym) ); // Visit the closest quadrant first. if (i = (y >= ym) << 1 | (x >= xm)) { q = quads[quads.length - 1]; quads[quads.length - 1] = quads[quads.length - 1 - i]; quads[quads.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), d2 = dx * dx + dy * dy; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d; x3 = x + d, y3 = y + d; data = node.data; } } } return data; } function tree_remove$1(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1, x, y, xm, ym, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (!(parent = node, node = node[i = bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3]) && node === (parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll$1(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root$1() { return this._root; } function tree_size$1() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit$1(callback) { var quads = [], q, node = this._root, child, x0, y0, x1, y1; if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); } } return this; } function tree_visitAfter$1(callback) { var quads = [], next = [], q; if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.x1, q.y1); } return this; } function defaultX$1(d) { return d[0]; } function tree_x$1(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY$1(d) { return d[1]; } function tree_y$1(_) { return arguments.length ? (this._y = _, this) : this._y; } function quadtree(nodes, x, y) { var tree = new Quadtree(x == null ? defaultX$1 : x, y == null ? defaultY$1 : y, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Quadtree(x, y, x0, y0, x1, y1) { this._x = x; this._y = y; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; this._root = undefined; } function leaf_copy$1(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto$1 = quadtree.prototype = Quadtree.prototype; treeProto$1.copy = function() { var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy$1(node), copy; nodes = [{source: node, target: copy._root = new Array(4)}]; while (node = nodes.pop()) { for (var i = 0; i < 4; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)}); else node.target[i] = leaf_copy$1(child); } } } return copy; }; treeProto$1.add = tree_add$1; treeProto$1.addAll = addAll$1; treeProto$1.cover = tree_cover$1; treeProto$1.data = tree_data$1; treeProto$1.extent = tree_extent$1; treeProto$1.find = tree_find$1; treeProto$1.remove = tree_remove$1; treeProto$1.removeAll = removeAll$1; treeProto$1.root = tree_root$1; treeProto$1.size = tree_size$1; treeProto$1.visit = tree_visit$1; treeProto$1.visitAfter = tree_visitAfter$1; treeProto$1.x = tree_x$1; treeProto$1.y = tree_y$1; function tree_add(d) { var x = +this._x.call(null, d), y = +this._y.call(null, d), z = +this._z.call(null, d); return add(this.cover(x, y, z), x, y, z, d); } function add(tree, x, y, z, d) { if (isNaN(x) || isNaN(y) || isNaN(z)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, z0 = tree._z0, x1 = tree._x1, y1 = tree._y1, z1 = tree._z1, xm, ym, zm, xp, yp, zp, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; if (parent = node, !(node = node[i = deep << 2 | bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); zp = +tree._z.call(null, node.data); if (x === xp && y === yp && z === zp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(8) : tree._root = new Array(8); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; } while ((i = deep << 2 | bottom << 1 | right) === (j = (zp >= zm) << 2 | (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var d, i, n = data.length, x, y, z, xz = new Array(n), yz = new Array(n), zz = new Array(n), x0 = Infinity, y0 = Infinity, z0 = Infinity, x1 = -Infinity, y1 = -Infinity, z1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) continue; xz[i] = x; yz[i] = y; zz[i] = z; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; if (z < z0) z0 = z; if (z > z1) z1 = z; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1 || z0 > z1) return this; // Expand the tree to cover the new points. this.cover(x0, y0, z0).cover(x1, y1, z1); // Add the new points. for (i = 0; i < n; ++i) { add(this, xz[i], yz[i], zz[i], data[i]); } return this; } function tree_cover(x, y, z) { if (isNaN(x = +x) || isNaN(y = +y) || isNaN(z = +z)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1; // If the octree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing octant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; z1 = (z0 = Math.floor(z)) + 1; } // Otherwise, double repeatedly to cover. else { var t = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1 || z0 > z || z >= z1) { i = (z < z0) << 2 | (y < y0) << 1 | (x < x0); parent = new Array(8), parent[i] = node, node = parent, t *= 2; switch (i) { case 0: x1 = x0 + t, y1 = y0 + t, z1 = z0 + t; break; case 1: x0 = x1 - t, y1 = y0 + t, z1 = z0 + t; break; case 2: x1 = x0 + t, y0 = y1 - t, z1 = z0 + t; break; case 3: x0 = x1 - t, y0 = y1 - t, z1 = z0 + t; break; case 4: x1 = x0 + t, y1 = y0 + t, z0 = z1 - t; break; case 5: x0 = x1 - t, y1 = y0 + t, z0 = z1 - t; break; case 6: x1 = x0 + t, y0 = y1 - t, z0 = z1 - t; break; case 7: x0 = x1 - t, y0 = y1 - t, z0 = z1 - t; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; return this; } function tree_data() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1], +_[0][2]).cover(+_[1][0], +_[1][1], +_[1][2]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0, this._z0], [this._x1, this._y1, this._z1]]; } function Octant(node, x0, y0, z0, x1, y1, z1) { this.node = node; this.x0 = x0; this.y0 = y0; this.z0 = z0; this.x1 = x1; this.y1 = y1; this.z1 = z1; } function tree_find(x, y, z, radius) { var data, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1, y1, z1, x2, y2, z2, x3 = this._x1, y3 = this._y1, z3 = this._z1, octs = [], node = this._root, q, i; if (node) octs.push(new Octant(node, x0, y0, z0, x3, y3, z3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius, z0 = z - radius; x3 = x + radius, y3 = y + radius, z3 = z + radius; radius *= radius; } while (q = octs.pop()) { // Stop searching if this octant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (z1 = q.z0) > z3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0 || (z2 = q.z1) < z0) continue; // Bisect the current octant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2, zm = (z1 + z2) / 2; octs.push( new Octant(node[7], xm, ym, zm, x2, y2, z2), new Octant(node[6], x1, ym, zm, xm, y2, z2), new Octant(node[5], xm, y1, zm, x2, ym, z2), new Octant(node[4], x1, y1, zm, xm, ym, z2), new Octant(node[3], xm, ym, z1, x2, y2, zm), new Octant(node[2], x1, ym, z1, xm, y2, zm), new Octant(node[1], xm, y1, z1, x2, ym, zm), new Octant(node[0], x1, y1, z1, xm, ym, zm) ); // Visit the closest octant first. if (i = (z >= zm) << 2 | (y >= ym) << 1 | (x >= xm)) { q = octs[octs.length - 1]; octs[octs.length - 1] = octs[octs.length - 1 - i]; octs[octs.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), dz = z - +this._z.call(null, node.data), d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d, z0 = z - d; x3 = x + d, y3 = y + d, z3 = z + d; data = node.data; } } } return data; } function tree_remove(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1, x, y, z, xm, ym, zm, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; if (!(parent = node, node = node[i = deep << 2 | bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 7] || parent[(i + 2) & 7] || parent[(i + 3) & 7] || parent[(i + 4) & 7] || parent[(i + 5) & 7] || parent[(i + 6) & 7] || parent[(i + 7) & 7]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3] || parent[4] || parent[5] || parent[6] || parent[7]) && node === (parent[7] || parent[6] || parent[5] || parent[4] || parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root() { return this._root; } function tree_size() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit(callback) { var octs = [], q, node = this._root, child, x0, y0, z0, x1, y1, z1; if (node) octs.push(new Octant(node, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); } } return this; } function tree_visitAfter(callback) { var octs = [], next = [], q; if (this._root) octs.push(new Octant(this._root, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.z0, q.x1, q.y1, q.z1); } return this; } function defaultX(d) { return d[0]; } function tree_x(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY(d) { return d[1]; } function tree_y(_) { return arguments.length ? (this._y = _, this) : this._y; } function defaultZ(d) { return d[2]; } function tree_z(_) { return arguments.length ? (this._z = _, this) : this._z; } function octree(nodes, x, y, z) { var tree = new Octree(x == null ? defaultX : x, y == null ? defaultY : y, z == null ? defaultZ : z, NaN, NaN, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Octree(x, y, z, x0, y0, z0, x1, y1, z1) { this._x = x; this._y = y; this._z = z; this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; this._root = undefined; } function leaf_copy(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto = octree.prototype = Octree.prototype; treeProto.copy = function() { var copy = new Octree(this._x, this._y, this._z, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{source: node, target: copy._root = new Array(8)}]; while (node = nodes.pop()) { for (var i = 0; i < 8; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(8)}); else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; treeProto.y = tree_y; treeProto.z = tree_z; function constant(x) { return function() { return x; }; } function jiggle(random) { return (random() - 0.5) * 1e-6; } function index$3(d) { return d.index; } function find(nodeById, nodeId) { var node = nodeById.get(nodeId); if (!node) throw new Error("node not found: " + nodeId); return node; } function d3ForceLink(links) { var id = index$3, strength = defaultStrength, strengths, distance = constant(30), distances, nodes, nDim, count, bias, random, iterations = 1; if (links == null) links = []; function defaultStrength(link) { return 1 / Math.min(count[link.source.index], count[link.target.index]); } function force(alpha) { for (var k = 0, n = links.length; k < iterations; ++k) { for (var i = 0, link, source, target, x = 0, y = 0, z = 0, l, b; i < n; ++i) { link = links[i], source = link.source, target = link.target; x = target.x + target.vx - source.x - source.vx || jiggle(random); if (nDim > 1) { y = target.y + target.vy - source.y - source.vy || jiggle(random); } if (nDim > 2) { z = target.z + target.vz - source.z - source.vz || jiggle(random); } l = Math.sqrt(x * x + y * y + z * z); l = (l - distances[i]) / l * alpha * strengths[i]; x *= l, y *= l, z *= l; target.vx -= x * (b = bias[i]); if (nDim > 1) { target.vy -= y * b; } if (nDim > 2) { target.vz -= z * b; } source.vx += x * (b = 1 - b); if (nDim > 1) { source.vy += y * b; } if (nDim > 2) { source.vz += z * b; } } } } function initialize() { if (!nodes) return; var i, n = nodes.length, m = links.length, nodeById = new Map(nodes.map((d, i) => [id(d, i, nodes), d])), link; for (i = 0, count = new Array(n); i < m; ++i) { link = links[i], link.index = i; if (typeof link.source !== "object") link.source = find(nodeById, link.source); if (typeof link.target !== "object") link.target = find(nodeById, link.target); count[link.source.index] = (count[link.source.index] || 0) + 1; count[link.target.index] = (count[link.target.index] || 0) + 1; } for (i = 0, bias = new Array(m); i < m; ++i) { link = links[i], bias[i] = count[link.source.index] / (count[link.source.index] + count[link.target.index]); } strengths = new Array(m), initializeStrength(); distances = new Array(m), initializeDistance(); } function initializeStrength() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { strengths[i] = +strength(links[i], i, links); } } function initializeDistance() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { distances[i] = +distance(links[i], i, links); } } force.initialize = function(_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.links = function(_) { return arguments.length ? (links = _, initialize(), force) : links; }; force.id = function(_) { return arguments.length ? (id = _, force) : id; }; force.iterations = function(_) { return arguments.length ? (iterations = +_, force) : iterations; }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initializeStrength(), force) : strength; }; force.distance = function(_) { return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), initializeDistance(), force) : distance; }; return force; } var noop$1 = {value: () => {}}; function dispatch() { for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) { if (!(t = arguments[i] + "") || (t in _) || /[\s.]/.test(t)) throw new Error("illegal type: " + t); _[t] = []; } return new Dispatch(_); } function Dispatch(_) { this._ = _; } function parseTypenames(typenames, types) { return typenames.trim().split(/^|\s+/).map(function(t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t); return {type: t, name: name}; }); } Dispatch.prototype = dispatch.prototype = { constructor: Dispatch, on: function(typename, callback) { var _ = this._, T = parseTypenames(typename + "", _), t, i = -1, n = T.length; // If no callback was specified, return the callback of the given type and name. if (arguments.length < 2) { while (++i < n) if ((t = (typename = T[i]).type) && (t = get(_[t], typename.name))) return t; return; } // If a type was specified, set the callback for the given type and name. // Otherwise, if a null callback was specified, remove callbacks of the given name. if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback); while (++i < n) { if (t = (typename = T[i]).type) _[t] = set(_[t], typename.name, callback); else if (callback == null) for (t in _) _[t] = set(_[t], typename.name, null); } return this; }, copy: function() { var copy = {}, _ = this._; for (var t in _) copy[t] = _[t].slice(); return new Dispatch(copy); }, call: function(type, that) { if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2]; if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); }, apply: function(type, that, args) { if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); } }; function get(type, name) { for (var i = 0, n = type.length, c; i < n; ++i) { if ((c = type[i]).name === name) { return c.value; } } } function set(type, name, callback) { for (var i = 0, n = type.length; i < n; ++i) { if (type[i].name === name) { type[i] = noop$1, type = type.slice(0, i).concat(type.slice(i + 1)); break; } } if (callback != null) type.push({name: name, value: callback}); return type; } var frame = 0, // is an animation frame pending? timeout = 0, // is a timeout pending? interval = 0, // are any timers active? pokeDelay = 1000, // how frequently we check for clock skew taskHead, taskTail, clockLast = 0, clockNow = 0, clockSkew = 0, clock = typeof performance === "object" && performance.now ? performance : Date, setFrame = typeof window === "object" && window.requestAnimationFrame ? window.requestAnimationFrame.bind(window) : function(f) { setTimeout(f, 17); }; function now() { return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew); } function clearNow() { clockNow = 0; } function Timer() { this._call = this._time = this._next = null; } Timer.prototype = timer.prototype = { constructor: Timer, restart: function(callback, delay, time) { if (typeof callback !== "function") throw new TypeError("callback is not a function"); time = (time == null ? now() : +time) + (delay == null ? 0 : +delay); if (!this._next && taskTail !== this) { if (taskTail) taskTail._next = this; else taskHead = this; taskTail = this; } this._call = callback; this._time = time; sleep(); }, stop: function() { if (this._call) { this._call = null; this._time = Infinity; sleep(); } } }; function timer(callback, delay, time) { var t = new Timer; t.restart(callback, delay, time); return t; } function timerFlush() { now(); // Get the current time, if not already set. ++frame; // Pretend we’ve set an alarm, if we haven’t already. var t = taskHead, e; while (t) { if ((e = clockNow - t._time) >= 0) t._call.call(undefined, e); t = t._next; } --frame; } function wake() { clockNow = (clockLast = clock.now()) + clockSkew; frame = timeout = 0; try { timerFlush(); } finally { frame = 0; nap(); clockNow = 0; } } function poke() { var now = clock.now(), delay = now - clockLast; if (delay > pokeDelay) clockSkew -= delay, clockLast = now; } function nap() { var t0, t1 = taskHead, t2, time = Infinity; while (t1) { if (t1._call) { if (time > t1._time) time = t1._time; t0 = t1, t1 = t1._next; } else { t2 = t1._next, t1._next = null; t1 = t0 ? t0._next = t2 : taskHead = t2; } } taskTail = t0; sleep(time); } function sleep(time) { if (frame) return; // Soonest alarm already set, or will be. if (timeout) timeout = clearTimeout(timeout); var delay = time - clockNow; // Strictly less than if we recomputed clockNow. if (delay > 24) { if (time < Infinity) timeout = setTimeout(wake, time - clock.now() - clockSkew); if (interval) interval = clearInterval(interval); } else { if (!interval) clockLast = clock.now(), interval = setInterval(poke, pokeDelay); frame = 1, setFrame(wake); } } // https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use const a = 1664525; const c = 1013904223; const m = 4294967296; // 2^32 function lcg() { let s = 1; return () => (s = (a * s + c) % m) / m; } var MAX_DIMENSIONS = 3; function x(d) { return d.x; } function y(d) { return d.y; } function z(d) { return d.z; } var initialRadius = 10, initialAngleRoll = Math.PI * (3 - Math.sqrt(5)), // Golden ratio angle initialAngleYaw = Math.PI * 20 / (9 + Math.sqrt(221)); // Markov irrational number function d3ForceSimulation(nodes, numDimensions) { numDimensions = numDimensions || 2; var nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(numDimensions))), simulation, alpha = 1, alphaMin = 0.001, alphaDecay = 1 - Math.pow(alphaMin, 1 / 300), alphaTarget = 0, velocityDecay = 0.6, forces = new Map(), stepper = timer(step), event = dispatch("tick", "end"), random = lcg(); if (nodes == null) nodes = []; function step() { tick(); event.call("tick", simulation); if (alpha < alphaMin) { stepper.stop(); event.call("end", simulation); } } function tick(iterations) { var i, n = nodes.length, node; if (iterations === undefined) iterations = 1; for (var k = 0; k < iterations; ++k) { alpha += (alphaTarget - alpha) * alphaDecay; forces.forEach(function (force) { force(alpha); }); for (i = 0; i < n; ++i) { node = nodes[i]; if (node.fx == null) node.x += node.vx *= velocityDecay; else node.x = node.fx, node.vx = 0; if (nDim > 1) { if (node.fy == null) node.y += node.vy *= velocityDecay; else node.y = node.fy, node.vy = 0; } if (nDim > 2) { if (node.fz == null) node.z += node.vz *= velocityDecay; else node.z = node.fz, node.vz = 0; } } } return simulation; } function initializeNodes() { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.index = i; if (node.fx != null) node.x = node.fx; if (node.fy != null) node.y = node.fy; if (node.fz != null) node.z = node.fz; if (isNaN(node.x) || (nDim > 1 && isNaN(node.y)) || (nDim > 2 && isNaN(node.z))) { var radius = initialRadius * (nDim > 2 ? Math.cbrt(0.5 + i) : (nDim > 1 ? Math.sqrt(0.5 + i) : i)), rollAngle = i * initialAngleRoll, yawAngle = i * initialAngleYaw; if (nDim === 1) { node.x = radius; } else if (nDim === 2) { node.x = radius * Math.cos(rollAngle); node.y = radius * Math.sin(rollAngle); } else { // 3 dimensions: use spherical distribution along 2 irrational number angles node.x = radius * Math.sin(rollAngle) * Math.cos(yawAngle); node.y = radius * Math.cos(rollAngle); node.z = radius * Math.sin(rollAngle) * Math.sin(yawAngle); } } if (isNaN(node.vx) || (nDim > 1 && isNaN(node.vy)) || (nDim > 2 && isNaN(node.vz))) { node.vx = 0; if (nDim > 1) { node.vy = 0; } if (nDim > 2) { node.vz = 0; } } } } function initializeForce(force) { if (force.initialize) force.initialize(nodes, random, nDim); return force; } initializeNodes(); return simulation = { tick: tick, restart: function() { return stepper.restart(step), simulation; }, stop: function() { return stepper.stop(), simulation; }, numDimensions: function(_) { return arguments.length ? (nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(_))), forces.forEach(initializeForce), simulation) : nDim; }, nodes: function(_) { return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes; }, alpha: function(_) { return arguments.length ? (alpha = +_, simulation) : alpha; }, alphaMin: function(_) { return arguments.length ? (alphaMin = +_, simulation) : alphaMin; }, alphaDecay: function(_) { return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay; }, alphaTarget: function(_) { return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget; }, velocityDecay: function(_) { return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay; }, randomSource: function(_) { return arguments.length ? (random = _, forces.forEach(initializeForce), simulation) : random; }, force: function(name, _) { return arguments.length > 1 ? ((_ == null ? forces.delete(name) : forces.set(name, initializeForce(_))), simulation) : forces.get(name); }, find: function() { var args = Array.prototype.slice.call(arguments); var x = args.shift() || 0, y = (nDim > 1 ? args.shift() : null) || 0, z = (nDim > 2 ? args.shift() : null) || 0, radius = args.shift() || Infinity; var i = 0, n = nodes.length, dx, dy, dz, d2, node, closest; radius *= radius; for (i = 0; i < n; ++i) { node = nodes[i]; dx = x - node.x; dy = y - (node.y || 0); dz = z - (node.z ||0); d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) closest = node, radius = d2; } return closest; }, on: function(name, _) { return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name); } }; } function d3ForceManyBody() { var nodes, nDim, node, random, alpha, strength = constant(-30), strengths, distanceMin2 = 1, distanceMax2 = Infinity, theta2 = 0.81; function force(_) { var i, n = nodes.length, tree = (nDim === 1 ? binarytree(nodes, x) :(nDim === 2 ? quadtree(nodes, x, y) :(nDim === 3 ? octree(nodes, x, y, z) :null ))).visitAfter(accumulate); for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply); } function initialize() { if (!nodes) return; var i, n = nodes.length, node; strengths = new Array(n); for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes); } function accumulate(treeNode) { var strength = 0, q, c, weight = 0, x, y, z, i; var numChildren = treeNode.length; // For internal nodes, accumulate forces from children. if (numChildren) { for (x = y = z = i = 0; i < numChildren; ++i) { if ((q = treeNode[i]) && (c = Math.abs(q.value))) { strength += q.value, weight += c, x += c * (q.x || 0), y += c * (q.y || 0), z += c * (q.z || 0); } } strength *= Math.sqrt(4 / numChildren); // scale accumulated strength according to number of dimensions treeNode.x = x / weight; if (nDim > 1) { treeNode.y = y / weight; } if (nDim > 2) { treeNode.z = z / weight; } } // For leaf nodes, accumulate forces from coincident nodes. else { q = treeNode; q.x = q.data.x; if (nDim > 1) { q.y = q.data.y; } if (nDim > 2) { q.z = q.data.z; } do strength += strengths[q.data.index]; while (q = q.next); } treeNode.value = strength; } function apply(treeNode, x1, arg1, arg2, arg3) { if (!treeNode.value) return true; var x2 = [arg1, arg2, arg3][nDim-1]; var x = treeNode.x - node.x, y = (nDim > 1 ? treeNode.y - node.y : 0), z = (nDim > 2 ? treeNode.z - node.z : 0), w = x2 - x1, l = x * x + y * y + z * z; // Apply the Barnes-Hut approximation if possible. // Limit forces for very close nodes; randomize direction if coincident. if (w * w / theta2 < l) { if (l < distanceMax2) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); node.vx += x * treeNode.value * alpha / l; if (nDim > 1) { node.vy += y * treeNode.value * alpha / l; } if (nDim > 2) { node.vz += z * treeNode.value * alpha / l; } } return true; } // Otherwise, process points directly. else if (treeNode.length || l >= distanceMax2) return; // Limit forces for very close nodes; randomize direction if coincident. if (treeNode.data !== node || treeNode.next) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); } do if (treeNode.data !== node) { w = strengths[treeNode.data.index] * alpha / l; node.vx += x * w; if (nDim > 1) { node.vy += y * w; } if (nDim > 2) { node.vz += z * w; } } while (treeNode = treeNode.next); } force.initialize = function(_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.distanceMin = function(_) { return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2); }; force.distanceMax = function(_) { return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2); }; force.theta = function(_) { return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2); }; return force; } function d3ForceRadial(radius, x, y, z) { var nodes, nDim, strength = constant(0.1), strengths, radiuses; if (typeof radius !== "function") radius = constant(+radius); if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force(alpha) { for (var i = 0, n = nodes.length; i < n; ++i) { var node = nodes[i], dx = node.x - x || 1e-6, dy = (node.y || 0) - y || 1e-6, dz = (node.z || 0) - z || 1e-6, r = Math.sqrt(dx * dx + dy * dy + dz * dz), k = (radiuses[i] - r) * strengths[i] * alpha / r; node.vx += dx * k; if (nDim>1) { node.vy += dy * k; } if (nDim>2) { node.vz += dz * k; } } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); radiuses = new Array(n); for (i = 0; i < n; ++i) { radiuses[i] = +radius(nodes[i], i, nodes); strengths[i] = isNaN(radiuses[i]) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function(initNodes, ...args) { nodes = initNodes; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.radius = function(_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), initialize(), force) : radius; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; force.z = function(_) { return arguments.length ? (z = +_, force) : z; }; return force; } var ngraph_events = function eventify(subject) { validateSubject(subject); var eventsStorage = createEventsStorage(subject); subject.on = eventsStorage.on; subject.off = eventsStorage.off; subject.fire = eventsStorage.fire; return subject; }; function createEventsStorage(subject) { // Store all event listeners to this hash. Key is event name, value is array // of callback records. // // A callback record consists of callback function and its optional context: // { 'eventName' => [{callback: function, ctx: object}] } var registeredEvents = Object.create(null); return { on: function (eventName, callback, ctx) { if (typeof callback !== 'function') { throw new Error('callback is expected to be a function'); } var handlers = registeredEvents[eventName]; if (!handlers) { handlers = registeredEvents[eventName] = []; } handlers.push({callback: callback, ctx: ctx}); return subject; }, off: function (eventName, callback) { var wantToRemoveAll = (typeof eventName === 'undefined'); if (wantToRemoveAll) { // Killing old events storage should be enough in this case: registeredEvents = Object.create(null); return subject; } if (registeredEvents[eventName]) { var deleteAllCallbacksForEvent = (typeof callback !== 'function'); if (deleteAllCallbacksForEvent) { delete registeredEvents[eventName]; } else { var callbacks = registeredEvents[eventName]; for (var i = 0; i < callbacks.length; ++i) { if (callbacks[i].callback === callback) { callbacks.splice(i, 1); } } } } return subject; }, fire: function (eventName) { var callbacks = registeredEvents[eventName]; if (!callbacks) { return subject; } var fireArguments; if (arguments.length > 1) { fireArguments = Array.prototype.splice.call(arguments, 1); } for(var i = 0; i < callbacks.length; ++i) { var callbackInfo = callbacks[i]; callbackInfo.callback.apply(callbackInfo.ctx, fireArguments); } return subject; } }; } function validateSubject(subject) { if (!subject) { throw new Error('Eventify cannot use falsy object as events subject'); } var reservedWords = ['on', 'fire', 'off']; for (var i = 0; i < reservedWords.length; ++i) { if (subject.hasOwnProperty(reservedWords[i])) { throw new Error("Subject cannot be eventified, since it already has property '" + reservedWords[i] + "'"); } } } /** * @fileOverview Contains definition of the core graph object. */ // TODO: need to change storage layer: // 1. Be able to get all nodes O(1) // 2. Be able to get number of links O(1) /** * @example * var graph = require('ngraph.graph')(); * graph.addNode(1); // graph has one node. * graph.addLink(2, 3); // now graph contains three nodes and one link. * */ var ngraph_graph = createGraph; var eventify$1 = ngraph_events; /** * Creates a new graph */ function createGraph(options) { // Graph structure is maintained as dictionary of nodes // and array of links. Each node has 'links' property which // hold all links related to that node. And general links // array is used to speed up all links enumeration. This is inefficient // in terms of memory, but simplifies coding. options = options || {}; if ('uniqueLinkId' in options) { console.warn( 'ngraph.graph: Starting from version 0.14 `uniqueLinkId` is deprecated.\n' + 'Use `multigraph` option instead\n', '\n', 'Note: there is also change in default behavior: From now on each graph\n'+ 'is considered to be not a multigraph by default (each edge is unique).' ); options.multigraph = options.uniqueLinkId; } // Dear reader, the non-multigraphs do not guarantee that there is only // one link for a given pair of node. When this option is set to false // we can save some memory and CPU (18% faster for non-multigraph); if (options.multigraph === undefined) options.multigraph = false; if (typeof Map !== 'function') { // TODO: Should we polyfill it ourselves? We don't use much operations there.. throw new Error('ngraph.graph requires `Map` to be defined. Please polyfill it before using ngraph'); } var nodes = new Map(); var links = [], // Hash of multi-edges. Used to track ids of edges between same nodes multiEdges = {}, suspendEvents = 0, createLink = options.multigraph ? createUniqueLink : createSingleLink, // Our graph API provides means to listen to graph changes. Users can subscribe // to be notified about changes in the graph by using `on` method. However // in some cases they don't use it. To avoid unnecessary memory consumption // we will not record graph changes until we have at least one subscriber. // Code below supports this optimization. // // Accumulates all changes made during graph updates. // Each change element contains: // changeType - one of the strings: 'add', 'remove' or 'update'; // node - if change is related to node this property is set to changed graph's node; // link - if change is related to link this property is set to changed graph's link; changes = [], recordLinkChange = noop, recordNodeChange = noop, enterModification = noop, exitModification = noop; // this is our public API: var graphPart = { /** * Adds node to the graph. If node with given id already exists in the graph * its data is extended with whatever comes in 'data' argument. * * @param nodeId the node's identifier. A string or number is preferred. * @param [data] additional data for the node being added. If node already * exists its data object is augmented with the new one. * * @return {node} The newly added node or node with given id if it already exists. */ addNode: addNode, /** * Adds a link to the graph. The function always create a new * link between two nodes. If one of the nodes does not exists * a new node is created. * * @param fromId link start node id; * @param toId link end node id; * @param [data] additional data to be set on the new link; * * @return {link} The newly created link */ addLink: addLink, /** * Removes link from the graph. If link does not exist does nothing. * * @param link - object returned by addLink() or getLinks() methods. * * @returns true if link was removed; false otherwise. */ removeLink: removeLink, /** * Removes node with given id from the graph. If node does not exist in the graph * does nothing. * * @param nodeId node's identifier passed to addNode() function. * * @returns true if node was removed; false otherwise. */ removeNode: removeNode, /** * Gets node with given identifier. If node does not exist undefined value is returned. * * @param nodeId requested node identifier; * * @return {node} in with requested identifier or undefined if no such node exists. */ getNode: getNode, /** * Gets number of nodes in this graph. * * @return number of nodes in the graph. */ getNodeCount: getNodeCount, /** * Gets total number of links in the graph. */ getLinkCount: getLinkCount, /** * Synonym for `getLinkCount()` */ getLinksCount: getLinkCount, /** * Synonym for `getNodeCount()` */ getNodesCount: getNodeCount, /** * Gets all links (inbound and outbound) from the node with given id. * If node with given id is not found null is returned. * * @param nodeId requested node identifier. * * @return Array of links from and to requested node if such node exists; * otherwise null is returned. */ getLinks: getLinks, /** * Invokes callback on each node of the graph. * * @param {Function(node)} callback Function to be invoked. The function * is passed one argument: visited node. */ forEachNode: forEachNode, /** * Invokes callback on every linked (adjacent) node to the given one. * * @param nodeId Identifier of the requested node. * @param {Function(node, link)} callback Function to be called on all linked nodes. * The function is passed two parameters: adjacent node and link object itself. * @param oriented if true graph treated as oriented. */ forEachLinkedNode: forEachLinkedNode, /** * Enumerates all links in the graph * * @param {Function(link)} callback Function to be called on all links in the graph. * The function is passed one parameter: graph's link object. * * Link object contains at least the following fields: * fromId - node id where link starts; * toId - node id where link ends, * data - additional data passed to graph.addLink() method. */ forEachLink: forEachLink, /** * Suspend all notifications about graph changes until * endUpdate is called. */ beginUpdate: enterModification, /** * Resumes all notifications about graph changes and fires * graph 'changed' event in case there are any pending changes. */ endUpdate: exitModification, /** * Removes all nodes and links from the graph. */ clear: clear, /** * Detects whether there is a link between two nodes. * Operation complexity is O(n) where n - number of links of a node. * NOTE: this function is synonim for getLink() * * @returns link if there is one. null otherwise. */ hasLink: getLink, /** * Detects whether there is a node with given id * * Operation complexity is O(1) * NOTE: this function is synonim for getNode() * * @returns node if there is one; Falsy value otherwise. */ hasNode: getNode, /** * Gets an edge between two nodes. * Operation complexity is O(n) where n - number of links of a node. * * @param {string} fromId link start identifier * @param {string} toId link end identifier * * @returns link if there is one. null otherwise. */ getLink: getLink }; // this will add `on()` and `fire()` methods. eventify$1(graphPart); monitorSubscribers(); return graphPart; function monitorSubscribers() { var realOn = graphPart.on; // replace real `on` with our temporary on, which will trigger change // modification monitoring: graphPart.on = on; function on() { // now it's time to start tracking stuff: graphPart.beginUpdate = enterModification = enterModificationReal; graphPart.endUpdate = exitModification = exitModificationReal; recordLinkChange = recordLinkChangeReal; recordNodeChange = recordNodeChangeReal; // this will replace current `on` method with real pub/sub from `eventify`. graphPart.on = realOn; // delegate to real `on` handler: return realOn.apply(graphPart, arguments); } } function recordLinkChangeReal(link, changeType) { changes.push({ link: link, changeType: changeType }); } function recordNodeChangeReal(node, changeType) { changes.push({ node: node, changeType: changeType }); } function addNode(nodeId, data) { if (nodeId === undefined) { throw new Error('Invalid node identifier'); } enterModification(); var node = getNode(nodeId); if (!node) { node = new Node(nodeId, data); recordNodeChange(node, 'add'); } else { node.data = data; recordNodeChange(node, 'update'); } nodes.set(nodeId, node); exitModification(); return node; } function getNode(nodeId) { return nodes.get(nodeId); } function removeNode(nodeId) { var node = getNode(nodeId); if (!node) { return false; } enterModification(); var prevLinks = node.links; if (prevLinks) { node.links = null; for(var i = 0; i < prevLinks.length; ++i) { removeLink(prevLinks[i]); } } nodes.delete(nodeId); recordNodeChange(node, 'remove'); exitModification(); return true; } function addLink(fromId, toId, data) { enterModification(); var fromNode = getNode(fromId) || addNode(fromId); var toNode = getNode(toId) || addNode(toId); var link = createLink(fromId, toId, data); links.push(link); // TODO: this is not cool. On large graphs potentially would consume more memory. addLinkToNode(fromNode, link); if (fromId !== toId) { // make sure we are not duplicating links for self-loops addLinkToNode(toNode, link); } recordLinkChange(link, 'add'); exitModification(); return link; } function createSingleLink(fromId, toId, data) { var linkId = makeLinkId(fromId, toId); return new Link(fromId, toId, data, linkId); } function createUniqueLink(fromId, toId, data) { // TODO: Get rid of this method. var linkId = makeLinkId(fromId, toId); var isMultiEdge = multiEdges.hasOwnProperty(linkId); if (isMultiEdge || getLink(fromId, toId)) { if (!isMultiEdge) { multiEdges[linkId] = 0; } var suffix = '@' + (++multiEdges[linkId]); linkId = makeLinkId(fromId + suffix, toId + suffix); } return new Link(fromId, toId, data, linkId); } function getNodeCount() { return nodes.size; } function getLinkCount() { return links.length; } function getLinks(nodeId) { var node = getNode(nodeId); return node ? node.links : null; } function removeLink(link) { if (!link) { return false; } var idx = indexOfElementInArray(link, links); if (idx < 0) { return false; } enterModification(); links.splice(idx, 1); var fromNode = getNode(link.fromId); var toNode = getNode(link.toId); if (fromNode) { idx = indexOfElementInArray(link, fromNode.links); if (idx >= 0) { fromNode.links.splice(idx, 1); } } if (toNode) { idx = indexOfElementInArray(link, toNode.links); if (idx >= 0) { toNode.links.splice(idx, 1); } } recordLinkChange(link, 'remove'); exitModification(); return true; } function getLink(fromNodeId, toNodeId) { // TODO: Use sorted links to speed this up var node = getNode(fromNodeId), i; if (!node || !node.links) { return null; } for (i = 0; i < node.links.length; ++i) { var link = node.links[i]; if (link.fromId === fromNodeId && link.toId === toNodeId) { return link; } } return null; // no link. } function clear() { enterModification(); forEachNode(function(node) { removeNode(node.id); }); exitModification(); } function forEachLink(callback) { var i, length; if (typeof callback === 'function') { for (i = 0, length = links.length; i < length; ++i) { callback(links[i]); } } } function forEachLinkedNode(nodeId, callback, oriented) { var node = getNode(nodeId); if (node && node.links && typeof callback === 'function') { if (oriented) { return forEachOrientedLink(node.links, nodeId, callback); } else { return forEachNonOrientedLink(node.links, nodeId, callback); } } } function forEachNonOrientedLink(links, nodeId, callback) { var quitFast; for (var i = 0; i < links.length; ++i) { var link = links[i]; var linkedNodeId = link.fromId === nodeId ? link.toId : link.fromId; quitFast = callback(nodes.get(linkedNodeId), link); if (quitFast) { return true; // Client does not need more iterations. Break now. } } } function forEachOrientedLink(links, nodeId, callback) { var quitFast; for (var i = 0; i < links.length; ++i) { var link = links[i]; if (link.fromId === nodeId) { quitFast = callback(nodes.get(link.toId), link); if (quitFast) { return true; // Client does not need more iterations. Break now. } } } } // we will not fire anything until users of this library explicitly call `on()` // method. function noop() {} // Enter, Exit modification allows bulk graph updates without firing events. function enterModificationReal() { suspendEvents += 1; } function exitModificationReal() { suspendEvents -= 1; if (suspendEvents === 0 && changes.length > 0) { graphPart.fire('changed', changes); changes.length = 0; } } function forEachNode(callback) { if (typeof callback !== 'function') { throw new Error('Function is expected to iterate over graph nodes. You passed ' + callback); } var valuesIterator = nodes.values(); var nextValue = valuesIterator.next(); while (!nextValue.done) { if (callback(nextValue.value)) { return true; // client doesn't want to proceed. Return. } nextValue = valuesIterator.next(); } } } // need this for old browsers. Should this be a separate module? function indexOfElementInArray(element, array) { if (!array) return -1; if (array.indexOf) { return array.indexOf(element); } var len = array.length, i; for (i = 0; i < len; i += 1) { if (array[i] === element) { return i; } } return -1; } /** * Internal structure to represent node; */ function Node(id, data) { this.id = id; this.links = null; this.data = data; } function addLinkToNode(node, link) { if (node.links) { node.links.push(link); } else { node.links = [link]; } } /** * Internal structure to represent links; */ function Link(fromId, toId, data, id) { this.fromId = fromId; this.toId = toId; this.data = data; this.id = id; } function makeLinkId(fromId, toId) { return fromId.toString() + '👉 ' + toId.toString(); } var ngraph_forcelayout = {exports: {}}; var generateCreateBody = {exports: {}}; var getVariableName$2 = function getVariableName(index) { if (index === 0) return 'x'; if (index === 1) return 'y'; if (index === 2) return 'z'; return 'c' + (index + 1); }; const getVariableName$1 = getVariableName$2; var createPatternBuilder$6 = function createPatternBuilder(dimension) { return pattern; function pattern(template, config) { let indent = (config && config.indent) || 0; let join = (config && config.join !== undefined) ? config.join : '\n'; let indentString = Array(indent + 1).join(' '); let buffer = []; for (let i = 0; i < dimension; ++i) { let variableName = getVariableName$1(i); let prefix = (i === 0) ? '' : indentString; buffer.push(prefix + template.replace(/{var}/g, variableName)); } return buffer.join(join); } }; const createPatternBuilder$5 = createPatternBuilder$6; generateCreateBody.exports = generateCreateBodyFunction$1; generateCreateBody.exports.generateCreateBodyFunctionBody = generateCreateBodyFunctionBody; // InlineTransform: getVectorCode generateCreateBody.exports.getVectorCode = getVectorCode; // InlineTransform: getBodyCode generateCreateBody.exports.getBodyCode = getBodyCode; // InlineTransformExport: module.exports = function() { return Body; } function generateCreateBodyFunction$1(dimension, debugSetters) { let code = generateCreateBodyFunctionBody(dimension, debugSetters); let {Body} = (new Function(code))(); return Body; } function generateCreateBodyFunctionBody(dimension, debugSetters) { let code = ` ${getVectorCode(dimension, debugSetters)} ${getBodyCode(dimension)} return {Body: Body, Vector: Vector}; `; return code; } function getBodyCode(dimension) { let pattern = createPatternBuilder$5(dimension); let variableList = pattern('{var}', {join: ', '}); return ` function Body(${variableList}) { this.isPinned = false; this.pos = new Vector(${variableList}); this.force = new Vector(); this.velocity = new Vector(); this.mass = 1; this.springCount = 0; this.springLength = 0; } Body.prototype.reset = function() { this.force.reset(); this.springCount = 0; this.springLength = 0; } Body.prototype.setPosition = function (${variableList}) { ${pattern('this.pos.{var} = {var} || 0;', {indent: 2})} };`; } function getVectorCode(dimension, debugSetters) { let pattern = createPatternBuilder$5(dimension); let setters = ''; if (debugSetters) { setters = `${pattern("\n\ var v{var};\n\ Object.defineProperty(this, '{var}', {\n\ set: function(v) { \n\ if (!Number.isFinite(v)) throw new Error('Cannot set non-numbers to {var}');\n\ v{var} = v; \n\ },\n\ get: function() { return v{var}; }\n\ });")}`; } let variableList = pattern('{var}', {join: ', '}); return `function Vector(${variableList}) { ${setters} if (typeof arguments[0] === 'object') { // could be another vector let v = arguments[0]; ${pattern('if (!Number.isFinite(v.{var})) throw new Error("Expected value is not a finite number at Vector constructor ({var})");', {indent: 4})} ${pattern('this.{var} = v.{var};', {indent: 4})} } else { ${pattern('this.{var} = typeof {var} === "number" ? {var} : 0;', {indent: 4})} } } Vector.prototype.reset = function () { ${pattern('this.{var} = ', {join: ''})}0; };`; } var generateQuadTree = {exports: {}}; const createPatternBuilder$4 = createPatternBuilder$6; const getVariableName = getVariableName$2; generateQuadTree.exports = generateQuadTreeFunction$1; generateQuadTree.exports.generateQuadTreeFunctionBody = generateQuadTreeFunctionBody; // These exports are for InlineTransform tool. // InlineTransform: getInsertStackCode generateQuadTree.exports.getInsertStackCode = getInsertStackCode; // InlineTransform: getQuadNodeCode generateQuadTree.exports.getQuadNodeCode = getQuadNodeCode; // InlineTransform: isSamePosition generateQuadTree.exports.isSamePosition = isSamePosition; // InlineTransform: getChildBodyCode generateQuadTree.exports.getChildBodyCode = getChildBodyCode; // InlineTransform: setChildBodyCode generateQuadTree.exports.setChildBodyCode = setChildBodyCode; function generateQuadTreeFunction$1(dimension) { let code = generateQuadTreeFunctionBody(dimension); return (new Function(code))(); } function generateQuadTreeFunctionBody(dimension) { let pattern = createPatternBuilder$4(dimension); let quadCount = Math.pow(2, dimension); let code = ` ${getInsertStackCode()} ${getQuadNodeCode(dimension)} ${isSamePosition(dimension)} ${getChildBodyCode(dimension)} ${setChildBodyCode(dimension)} function createQuadTree(options, random) { options = options || {}; options.gravity = typeof options.gravity === 'number' ? options.gravity : -1; options.theta = typeof options.theta === 'number' ? options.theta : 0.8; var gravity = options.gravity; var updateQueue = []; var insertStack = new InsertStack(); var theta = options.theta; var nodesCache = []; var currentInCache = 0; var root = newNode(); return { insertBodies: insertBodies, /** * Gets root node if it is present */ getRoot: function() { return root; }, updateBodyForce: update, options: function(newOptions) { if (newOptions) { if (typeof newOptions.gravity === 'number') { gravity = newOptions.gravity; } if (typeof newOptions.theta === 'number') { theta = newOptions.theta; } return this; } return { gravity: gravity, theta: theta }; } }; function newNode() { // To avoid pressure on GC we reuse nodes. var node = nodesCache[currentInCache]; if (node) { ${assignQuads(' node.')} node.body = null; node.mass = ${pattern('node.mass_{var} = ', {join: ''})}0; ${pattern('node.min_{var} = node.max_{var} = ', {join: ''})}0; } else { node = new QuadNode(); nodesCache[currentInCache] = node; } ++currentInCache; return node; } function update(sourceBody) { var queue = updateQueue; var v; ${pattern('var d{var};', {indent: 4})} var r; ${pattern('var f{var} = 0;', {indent: 4})} var queueLength = 1; var shiftIdx = 0; var pushIdx = 1; queue[0] = root; while (queueLength) { var node = queue[shiftIdx]; var body = node.body; queueLength -= 1; shiftIdx += 1; var differentBody = (body !== sourceBody); if (body && differentBody) { // If the current node is a leaf node (and it is not source body), // calculate the force exerted by the current node on body, and add this // amount to body's net force. ${pattern('d{var} = body.pos.{var} - sourceBody.pos.{var};', {indent: 8})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); if (r === 0) { // Poor man's protection against zero distance. ${pattern('d{var} = (random.nextDouble() - 0.5) / 50;', {indent: 10})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); } // This is standard gravitation force calculation but we divide // by r^3 to save two operations when normalizing force vector. v = gravity * body.mass * sourceBody.mass / (r * r * r); ${pattern('f{var} += v * d{var};', {indent: 8})} } else if (differentBody) { // Otherwise, calculate the ratio s / r, where s is the width of the region // represented by the internal node, and r is the distance between the body // and the node's center-of-mass ${pattern('d{var} = node.mass_{var} / node.mass - sourceBody.pos.{var};', {indent: 8})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); if (r === 0) { // Sorry about code duplication. I don't want to create many functions // right away. Just want to see performance first. ${pattern('d{var} = (random.nextDouble() - 0.5) / 50;', {indent: 10})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); } // If s / r < θ, treat this internal node as a single body, and calculate the // force it exerts on sourceBody, and add this amount to sourceBody's net force. if ((node.max_${getVariableName(0)} - node.min_${getVariableName(0)}) / r < theta) { // in the if statement above we consider node's width only // because the region was made into square during tree creation. // Thus there is no difference between using width or height. v = gravity * node.mass * sourceBody.mass / (r * r * r); ${pattern('f{var} += v * d{var};', {indent: 10})} } else { // Otherwise, run the procedure recursively on each of the current node's children. // I intentionally unfolded this loop, to save several CPU cycles. ${runRecursiveOnChildren()} } } } ${pattern('sourceBody.force.{var} += f{var};', {indent: 4})} } function insertBodies(bodies) { ${pattern('var {var}min = Number.MAX_VALUE;', {indent: 4})} ${pattern('var {var}max = Number.MIN_VALUE;', {indent: 4})} var i = bodies.length; // To reduce quad tree depth we are looking for exact bounding box of all particles. while (i--) { var pos = bodies[i].pos; ${pattern('if (pos.{var} < {var}min) {var}min = pos.{var};', {indent: 6})} ${pattern('if (pos.{var} > {var}max) {var}max = pos.{var};', {indent: 6})} } // Makes the bounds square. var maxSideLength = -Infinity; ${pattern('if ({var}max - {var}min > maxSideLength) maxSideLength = {var}max - {var}min ;', {indent: 4})} currentInCache = 0; root = newNode(); ${pattern('root.min_{var} = {var}min;', {indent: 4})} ${pattern('root.max_{var} = {var}min + maxSideLength;', {indent: 4})} i = bodies.length - 1; if (i >= 0) { root.body = bodies[i]; } while (i--) { insert(bodies[i], root); } } function insert(newBody) { insertStack.reset(); insertStack.push(root, newBody); while (!insertStack.isEmpty()) { var stackItem = insertStack.pop(); var node = stackItem.node; var body = stackItem.body; if (!node.body) { // This is internal node. Update the total mass of the node and center-of-mass. ${pattern('var {var} = body.pos.{var};', {indent: 8})} node.mass += body.mass; ${pattern('node.mass_{var} += body.mass * {var};', {indent: 8})} // Recursively insert the body in the appropriate quadrant. // But first find the appropriate quadrant. var quadIdx = 0; // Assume we are in the 0's quad. ${pattern('var min_{var} = node.min_{var};', {indent: 8})} ${pattern('var max_{var} = (min_{var} + node.max_{var}) / 2;', {indent: 8})} ${assignInsertionQuadIndex(8)} var child = getChild(node, quadIdx); if (!child) { // The node is internal but this quadrant is not taken. Add // subnode to it. child = newNode(); ${pattern('child.min_{var} = min_{var};', {indent: 10})} ${pattern('child.max_{var} = max_{var};', {indent: 10})} child.body = body; setChild(node, quadIdx, child); } else { // continue searching in this quadrant. insertStack.push(child, body); } } else { // We are trying to add to the leaf node. // We have to convert current leaf into internal node // and continue adding two nodes. var oldBody = node.body; node.body = null; // internal nodes do not cary bodies if (isSamePosition(oldBody.pos, body.pos)) { // Prevent infinite subdivision by bumping one node // anywhere in this quadrant var retriesCount = 3; do { var offset = random.nextDouble(); ${pattern('var d{var} = (node.max_{var} - node.min_{var}) * offset;', {indent: 12})} ${pattern('oldBody.pos.{var} = node.min_{var} + d{var};', {indent: 12})} retriesCount -= 1; // Make sure we don't bump it out of the box. If we do, next iteration should fix it } while (retriesCount > 0 && isSamePosition(oldBody.pos, body.pos)); if (retriesCount === 0 && isSamePosition(oldBody.pos, body.pos)) { // This is very bad, we ran out of precision. // if we do not return from the method we'll get into // infinite loop here. So we sacrifice correctness of layout, and keep the app running // Next layout iteration should get larger bounding box in the first step and fix this return; } } // Next iteration should subdivide node further. insertStack.push(node, oldBody); insertStack.push(node, body); } } } } return createQuadTree; `; return code; function assignInsertionQuadIndex(indentCount) { let insertionCode = []; let indent = Array(indentCount + 1).join(' '); for (let i = 0; i < dimension; ++i) { insertionCode.push(indent + `if (${getVariableName(i)} > max_${getVariableName(i)}) {`); insertionCode.push(indent + ` quadIdx = quadIdx + ${Math.pow(2, i)};`); insertionCode.push(indent + ` min_${getVariableName(i)} = max_${getVariableName(i)};`); insertionCode.push(indent + ` max_${getVariableName(i)} = node.max_${getVariableName(i)};`); insertionCode.push(indent + `}`); } return insertionCode.join('\n'); // if (x > max_x) { // somewhere in the eastern part. // quadIdx = quadIdx + 1; // left = right; // right = node.right; // } } function runRecursiveOnChildren() { let indent = Array(11).join(' '); let recursiveCode = []; for (let i = 0; i < quadCount; ++i) { recursiveCode.push(indent + `if (node.quad${i}) {`); recursiveCode.push(indent + ` queue[pushIdx] = node.quad${i};`); recursiveCode.push(indent + ` queueLength += 1;`); recursiveCode.push(indent + ` pushIdx += 1;`); recursiveCode.push(indent + `}`); } return recursiveCode.join('\n'); // if (node.quad0) { // queue[pushIdx] = node.quad0; // queueLength += 1; // pushIdx += 1; // } } function assignQuads(indent) { // this.quad0 = null; // this.quad1 = null; // this.quad2 = null; // this.quad3 = null; let quads = []; for (let i = 0; i < quadCount; ++i) { quads.push(`${indent}quad${i} = null;`); } return quads.join('\n'); } } function isSamePosition(dimension) { let pattern = createPatternBuilder$4(dimension); return ` function isSamePosition(point1, point2) { ${pattern('var d{var} = Math.abs(point1.{var} - point2.{var});', {indent: 2})} return ${pattern('d{var} < 1e-8', {join: ' && '})}; } `; } function setChildBodyCode(dimension) { var quadCount = Math.pow(2, dimension); return ` function setChild(node, idx, child) { ${setChildBody()} }`; function setChildBody() { let childBody = []; for (let i = 0; i < quadCount; ++i) { let prefix = (i === 0) ? ' ' : ' else '; childBody.push(`${prefix}if (idx === ${i}) node.quad${i} = child;`); } return childBody.join('\n'); // if (idx === 0) node.quad0 = child; // else if (idx === 1) node.quad1 = child; // else if (idx === 2) node.quad2 = child; // else if (idx === 3) node.quad3 = child; } } function getChildBodyCode(dimension) { return `function getChild(node, idx) { ${getChildBody()} return null; }`; function getChildBody() { let childBody = []; let quadCount = Math.pow(2, dimension); for (let i = 0; i < quadCount; ++i) { childBody.push(` if (idx === ${i}) return node.quad${i};`); } return childBody.join('\n'); // if (idx === 0) return node.quad0; // if (idx === 1) return node.quad1; // if (idx === 2) return node.quad2; // if (idx === 3) return node.quad3; } } function getQuadNodeCode(dimension) { let pattern = createPatternBuilder$4(dimension); let quadCount = Math.pow(2, dimension); var quadNodeCode = ` function QuadNode() { // body stored inside this node. In quad tree only leaf nodes (by construction) // contain bodies: this.body = null; // Child nodes are stored in quads. Each quad is presented by number: // 0 | 1 // ----- // 2 | 3 ${assignQuads(' this.')} // Total mass of current node this.mass = 0; // Center of mass coordinates ${pattern('this.mass_{var} = 0;', {indent: 2})} // bounding box coordinates ${pattern('this.min_{var} = 0;', {indent: 2})} ${pattern('this.max_{var} = 0;', {indent: 2})} } `; return quadNodeCode; function assignQuads(indent) { // this.quad0 = null; // this.quad1 = null; // this.quad2 = null; // this.quad3 = null; let quads = []; for (let i = 0; i < quadCount; ++i) { quads.push(`${indent}quad${i} = null;`); } return quads.join('\n'); } } function getInsertStackCode() { return ` /** * Our implementation of QuadTree is non-recursive to avoid GC hit * This data structure represent stack of elements * which we are trying to insert into quad tree. */ function InsertStack () { this.stack = []; this.popIdx = 0; } InsertStack.prototype = { isEmpty: function() { return this.popIdx === 0; }, push: function (node, body) { var item = this.stack[this.popIdx]; if (!item) { // we are trying to avoid memory pressure: create new element // only when absolutely necessary this.stack[this.popIdx] = new InsertStackElement(node, body); } else { item.node = node; item.body = body; } ++this.popIdx; }, pop: function () { if (this.popIdx > 0) { return this.stack[--this.popIdx]; } }, reset: function () { this.popIdx = 0; } }; function InsertStackElement(node, body) { this.node = node; // QuadTree node this.body = body; // physical body which needs to be inserted to node } `; } var generateBounds = {exports: {}}; generateBounds.exports = generateBoundsFunction$1; generateBounds.exports.generateFunctionBody = generateBoundsFunctionBody; const createPatternBuilder$3 = createPatternBuilder$6; function generateBoundsFunction$1(dimension) { let code = generateBoundsFunctionBody(dimension); return new Function('bodies', 'settings', 'random', code); } function generateBoundsFunctionBody(dimension) { let pattern = createPatternBuilder$3(dimension); let code = ` var boundingBox = { ${pattern('min_{var}: 0, max_{var}: 0,', {indent: 4})} }; return { box: boundingBox, update: updateBoundingBox, reset: resetBoundingBox, getBestNewPosition: function (neighbors) { var ${pattern('base_{var} = 0', {join: ', '})}; if (neighbors.length) { for (var i = 0; i < neighbors.length; ++i) { let neighborPos = neighbors[i].pos; ${pattern('base_{var} += neighborPos.{var};', {indent: 10})} } ${pattern('base_{var} /= neighbors.length;', {indent: 8})} } else { ${pattern('base_{var} = (boundingBox.min_{var} + boundingBox.max_{var}) / 2;', {indent: 8})} } var springLength = settings.springLength; return { ${pattern('{var}: base_{var} + (random.nextDouble() - 0.5) * springLength,', {indent: 8})} }; } }; function updateBoundingBox() { var i = bodies.length; if (i === 0) return; // No bodies - no borders. ${pattern('var max_{var} = -Infinity;', {indent: 4})} ${pattern('var min_{var} = Infinity;', {indent: 4})} while(i--) { // this is O(n), it could be done faster with quadtree, if we check the root node bounds var bodyPos = bodies[i].pos; ${pattern('if (bodyPos.{var} < min_{var}) min_{var} = bodyPos.{var};', {indent: 6})} ${pattern('if (bodyPos.{var} > max_{var}) max_{var} = bodyPos.{var};', {indent: 6})} } ${pattern('boundingBox.min_{var} = min_{var};', {indent: 4})} ${pattern('boundingBox.max_{var} = max_{var};', {indent: 4})} } function resetBoundingBox() { ${pattern('boundingBox.min_{var} = boundingBox.max_{var} = 0;', {indent: 4})} } `; return code; } var generateCreateDragForce = {exports: {}}; const createPatternBuilder$2 = createPatternBuilder$6; generateCreateDragForce.exports = generateCreateDragForceFunction$1; generateCreateDragForce.exports.generateCreateDragForceFunctionBody = generateCreateDragForceFunctionBody; function generateCreateDragForceFunction$1(dimension) { let code = generateCreateDragForceFunctionBody(dimension); return new Function('options', code); } function generateCreateDragForceFunctionBody(dimension) { let pattern = createPatternBuilder$2(dimension); let code = ` if (!Number.isFinite(options.dragCoefficient)) throw new Error('dragCoefficient is not a finite number'); return { update: function(body) { ${pattern('body.force.{var} -= options.dragCoefficient * body.velocity.{var};', {indent: 6})} } }; `; return code; } var generateCreateSpringForce = {exports: {}}; const createPatternBuilder$1 = createPatternBuilder$6; generateCreateSpringForce.exports = generateCreateSpringForceFunction$1; generateCreateSpringForce.exports.generateCreateSpringForceFunctionBody = generateCreateSpringForceFunctionBody; function generateCreateSpringForceFunction$1(dimension) { let code = generateCreateSpringForceFunctionBody(dimension); return new Function('options', 'random', code); } function generateCreateSpringForceFunctionBody(dimension) { let pattern = createPatternBuilder$1(dimension); let code = ` if (!Number.isFinite(options.springCoefficient)) throw new Error('Spring coefficient is not a number'); if (!Number.isFinite(options.springLength)) throw new Error('Spring length is not a number'); return { /** * Updates forces acting on a spring */ update: function (spring) { var body1 = spring.from; var body2 = spring.to; var length = spring.length < 0 ? options.springLength : spring.length; ${pattern('var d{var} = body2.pos.{var} - body1.pos.{var};', {indent: 6})} var r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); if (r === 0) { ${pattern('d{var} = (random.nextDouble() - 0.5) / 50;', {indent: 8})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); } var d = r - length; var coefficient = ((spring.coefficient > 0) ? spring.coefficient : options.springCoefficient) * d / r; ${pattern('body1.force.{var} += coefficient * d{var}', {indent: 6})}; body1.springCount += 1; body1.springLength += r; ${pattern('body2.force.{var} -= coefficient * d{var}', {indent: 6})}; body2.springCount += 1; body2.springLength += r; } }; `; return code; } var generateIntegrator = {exports: {}}; const createPatternBuilder = createPatternBuilder$6; generateIntegrator.exports = generateIntegratorFunction$1; generateIntegrator.exports.generateIntegratorFunctionBody = generateIntegratorFunctionBody; function generateIntegratorFunction$1(dimension) { let code = generateIntegratorFunctionBody(dimension); return new Function('bodies', 'timeStep', 'adaptiveTimeStepWeight', code); } function generateIntegratorFunctionBody(dimension) { let pattern = createPatternBuilder(dimension); let code = ` var length = bodies.length; if (length === 0) return 0; ${pattern('var d{var} = 0, t{var} = 0;', {indent: 2})} for (var i = 0; i < length; ++i) { var body = bodies[i]; if (body.isPinned) continue; if (adaptiveTimeStepWeight && body.springCount) { timeStep = (adaptiveTimeStepWeight * body.springLength/body.springCount); } var coeff = timeStep / body.mass; ${pattern('body.velocity.{var} += coeff * body.force.{var};', {indent: 4})} ${pattern('var v{var} = body.velocity.{var};', {indent: 4})} var v = Math.sqrt(${pattern('v{var} * v{var}', {join: ' + '})}); if (v > 1) { // We normalize it so that we move within timeStep range. // for the case when v <= 1 - we let velocity to fade out. ${pattern('body.velocity.{var} = v{var} / v;', {indent: 6})} } ${pattern('d{var} = timeStep * body.velocity.{var};', {indent: 4})} ${pattern('body.pos.{var} += d{var};', {indent: 4})} ${pattern('t{var} += Math.abs(d{var});', {indent: 4})} } return (${pattern('t{var} * t{var}', {join: ' + '})})/length; `; return code; } var spring = Spring; /** * Represents a physical spring. Spring connects two bodies, has rest length * stiffness coefficient and optional weight */ function Spring(fromBody, toBody, length, springCoefficient) { this.from = fromBody; this.to = toBody; this.length = length; this.coefficient = springCoefficient; } var ngraph_merge = merge; /** * Augments `target` with properties in `options`. Does not override * target's properties if they are defined and matches expected type in * options * * @returns {Object} merged object */ function merge(target, options) { var key; if (!target) { target = {}; } if (options) { for (key in options) { if (options.hasOwnProperty(key)) { var targetHasIt = target.hasOwnProperty(key), optionsValueType = typeof options[key], shouldReplace = !targetHasIt || (typeof target[key] !== optionsValueType); if (shouldReplace) { target[key] = options[key]; } else if (optionsValueType === 'object') { // go deep, don't care about loops here, we are simple API!: target[key] = merge(target[key], options[key]); } } } } return target; } var ngraph_random = {exports: {}}; ngraph_random.exports = random; // TODO: Deprecate? ngraph_random.exports.random = random, ngraph_random.exports.randomIterator = randomIterator; /** * Creates seeded PRNG with two methods: * next() and nextDouble() */ function random(inputSeed) { var seed = typeof inputSeed === 'number' ? inputSeed : (+new Date()); return new Generator(seed) } function Generator(seed) { this.seed = seed; } /** * Generates random integer number in the range from 0 (inclusive) to maxValue (exclusive) * * @param maxValue Number REQUIRED. Omitting this number will result in NaN values from PRNG. */ Generator.prototype.next = next; /** * Generates random double number in the range from 0 (inclusive) to 1 (exclusive) * This function is the same as Math.random() (except that it could be seeded) */ Generator.prototype.nextDouble = nextDouble; /** * Returns a random real number from uniform distribution in [0, 1) */ Generator.prototype.uniform = nextDouble; /** * Returns a random real number from a Gaussian distribution * with 0 as a mean, and 1 as standard deviation u ~ N(0,1) */ Generator.prototype.gaussian = gaussian; function gaussian() { // use the polar form of the Box-Muller transform // based on https://introcs.cs.princeton.edu/java/23recursion/StdRandom.java var r, x, y; do { x = this.nextDouble() * 2 - 1; y = this.nextDouble() * 2 - 1; r = x * x + y * y; } while (r >= 1 || r === 0); return x * Math.sqrt(-2 * Math.log(r)/r); } /** * See https://twitter.com/anvaka/status/1296182534150135808 */ Generator.prototype.levy = levy; function levy() { var beta = 3 / 2; var sigma = Math.pow( gamma( 1 + beta ) * Math.sin(Math.PI * beta / 2) / (gamma((1 + beta) / 2) * beta * Math.pow(2, (beta - 1) / 2)), 1/beta ); return this.gaussian() * sigma / Math.pow(Math.abs(this.gaussian()), 1/beta); } // gamma function approximation function gamma(z) { return Math.sqrt(2 * Math.PI / z) * Math.pow((1 / Math.E) * (z + 1 / (12 * z - 1 / (10 * z))), z); } function nextDouble() { var seed = this.seed; // Robert Jenkins' 32 bit integer hash function. seed = ((seed + 0x7ed55d16) + (seed << 12)) & 0xffffffff; seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff; seed = ((seed + 0x165667b1) + (seed << 5)) & 0xffffffff; seed = ((seed + 0xd3a2646c) ^ (seed << 9)) & 0xffffffff; seed = ((seed + 0xfd7046c5) + (seed << 3)) & 0xffffffff; seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff; this.seed = seed; return (seed & 0xfffffff) / 0x10000000; } function next(maxValue) { return Math.floor(this.nextDouble() * maxValue); } /* * Creates iterator over array, which returns items of array in random order * Time complexity is guaranteed to be O(n); */ function randomIterator(array, customRandom) { var localRandom = customRandom || random(); if (typeof localRandom.next !== 'function') { throw new Error('customRandom does not match expected API: next() function is missing'); } return { forEach: forEach, /** * Shuffles array randomly, in place. */ shuffle: shuffle }; function shuffle() { var i, j, t; for (i = array.length - 1; i > 0; --i) { j = localRandom.next(i + 1); // i inclusive t = array[j]; array[j] = array[i]; array[i] = t; } return array; } function forEach(callback) { var i, j, t; for (i = array.length - 1; i > 0; --i) { j = localRandom.next(i + 1); // i inclusive t = array[j]; array[j] = array[i]; array[i] = t; callback(t); } if (array.length) { callback(array[0]); } } } /** * Manages a simulation of physical forces acting on bodies and springs. */ var createPhysicsSimulator_1 = createPhysicsSimulator; var generateCreateBodyFunction = generateCreateBody.exports; var generateQuadTreeFunction = generateQuadTree.exports; var generateBoundsFunction = generateBounds.exports; var generateCreateDragForceFunction = generateCreateDragForce.exports; var generateCreateSpringForceFunction = generateCreateSpringForce.exports; var generateIntegratorFunction = generateIntegrator.exports; var dimensionalCache = {}; function createPhysicsSimulator(settings) { var Spring = spring; var merge = ngraph_merge; var eventify = ngraph_events; if (settings) { // Check for names from older versions of the layout if (settings.springCoeff !== undefined) throw new Error('springCoeff was renamed to springCoefficient'); if (settings.dragCoeff !== undefined) throw new Error('dragCoeff was renamed to dragCoefficient'); } settings = merge(settings, { /** * Ideal length for links (springs in physical model). */ springLength: 10, /** * Hook's law coefficient. 1 - solid spring. */ springCoefficient: 0.8, /** * Coulomb's law coefficient. It's used to repel nodes thus should be negative * if you make it positive nodes start attract each other :). */ gravity: -12, /** * Theta coefficient from Barnes Hut simulation. Ranged between (0, 1). * The closer it's to 1 the more nodes algorithm will have to go through. * Setting it to one makes Barnes Hut simulation no different from * brute-force forces calculation (each node is considered). */ theta: 0.8, /** * Drag force coefficient. Used to slow down system, thus should be less than 1. * The closer it is to 0 the less tight system will be. */ dragCoefficient: 0.9, // TODO: Need to rename this to something better. E.g. `dragCoefficient` /** * Default time step (dt) for forces integration */ timeStep : 0.5, /** * Adaptive time step uses average spring length to compute actual time step: * See: https://twitter.com/anvaka/status/1293067160755957760 */ adaptiveTimeStepWeight: 0, /** * This parameter defines number of dimensions of the space where simulation * is performed. */ dimensions: 2, /** * In debug mode more checks are performed, this will help you catch errors * quickly, however for production build it is recommended to turn off this flag * to speed up computation. */ debug: false }); var factory = dimensionalCache[settings.dimensions]; if (!factory) { var dimensions = settings.dimensions; factory = { Body: generateCreateBodyFunction(dimensions, settings.debug), createQuadTree: generateQuadTreeFunction(dimensions), createBounds: generateBoundsFunction(dimensions), createDragForce: generateCreateDragForceFunction(dimensions), createSpringForce: generateCreateSpringForceFunction(dimensions), integrate: generateIntegratorFunction(dimensions), }; dimensionalCache[dimensions] = factory; } var Body = factory.Body; var createQuadTree = factory.createQuadTree; var createBounds = factory.createBounds; var createDragForce = factory.createDragForce; var createSpringForce = factory.createSpringForce; var integrate = factory.integrate; var createBody = pos => new Body(pos); var random = ngraph_random.exports.random(42); var bodies = []; // Bodies in this simulation. var springs = []; // Springs in this simulation. var quadTree = createQuadTree(settings, random); var bounds = createBounds(bodies, settings, random); var springForce = createSpringForce(settings, random); var dragForce = createDragForce(settings); var totalMovement = 0; // how much movement we made on last step var forces = []; var forceMap = new Map(); var iterationNumber = 0; addForce('nbody', nbodyForce); addForce('spring', updateSpringForce); var publicApi = { /** * Array of bodies, registered with current simulator * * Note: To add new body, use addBody() method. This property is only * exposed for testing/performance purposes. */ bodies: bodies, quadTree: quadTree, /** * Array of springs, registered with current simulator * * Note: To add new spring, use addSpring() method. This property is only * exposed for testing/performance purposes. */ springs: springs, /** * Returns settings with which current simulator was initialized */ settings: settings, /** * Adds a new force to simulation */ addForce: addForce, /** * Removes a force from the simulation. */ removeForce: removeForce, /** * Returns a map of all registered forces. */ getForces: getForces, /** * Performs one step of force simulation. * * @returns {boolean} true if system is considered stable; False otherwise. */ step: function () { for (var i = 0; i < forces.length; ++i) { forces[i](iterationNumber); } var movement = integrate(bodies, settings.timeStep, settings.adaptiveTimeStepWeight); iterationNumber += 1; return movement; }, /** * Adds body to the system * * @param {ngraph.physics.primitives.Body} body physical body * * @returns {ngraph.physics.primitives.Body} added body */ addBody: function (body) { if (!body) { throw new Error('Body is required'); } bodies.push(body); return body; }, /** * Adds body to the system at given position * * @param {Object} pos position of a body * * @returns {ngraph.physics.primitives.Body} added body */ addBodyAt: function (pos) { if (!pos) { throw new Error('Body position is required'); } var body = createBody(pos); bodies.push(body); return body; }, /** * Removes body from the system * * @param {ngraph.physics.primitives.Body} body to remove * * @returns {Boolean} true if body found and removed. falsy otherwise; */ removeBody: function (body) { if (!body) { return; } var idx = bodies.indexOf(body); if (idx < 0) { return; } bodies.splice(idx, 1); if (bodies.length === 0) { bounds.reset(); } return true; }, /** * Adds a spring to this simulation. * * @returns {Object} - a handle for a spring. If you want to later remove * spring pass it to removeSpring() method. */ addSpring: function (body1, body2, springLength, springCoefficient) { if (!body1 || !body2) { throw new Error('Cannot add null spring to force simulator'); } if (typeof springLength !== 'number') { springLength = -1; // assume global configuration } var spring = new Spring(body1, body2, springLength, springCoefficient >= 0 ? springCoefficient : -1); springs.push(spring); // TODO: could mark simulator as dirty. return spring; }, /** * Returns amount of movement performed on last step() call */ getTotalMovement: function () { return totalMovement; }, /** * Removes spring from the system * * @param {Object} spring to remove. Spring is an object returned by addSpring * * @returns {Boolean} true if spring found and removed. falsy otherwise; */ removeSpring: function (spring) { if (!spring) { return; } var idx = springs.indexOf(spring); if (idx > -1) { springs.splice(idx, 1); return true; } }, getBestNewBodyPosition: function (neighbors) { return bounds.getBestNewPosition(neighbors); }, /** * Returns bounding box which covers all bodies */ getBBox: getBoundingBox, getBoundingBox: getBoundingBox, invalidateBBox: function () { console.warn('invalidateBBox() is deprecated, bounds always recomputed on `getBBox()` call'); }, // TODO: Move the force specific stuff to force gravity: function (value) { if (value !== undefined) { settings.gravity = value; quadTree.options({gravity: value}); return this; } else { return settings.gravity; } }, theta: function (value) { if (value !== undefined) { settings.theta = value; quadTree.options({theta: value}); return this; } else { return settings.theta; } }, /** * Returns pseudo-random number generator instance. */ random: random }; // allow settings modification via public API: expose(settings, publicApi); eventify(publicApi); return publicApi; function getBoundingBox() { bounds.update(); return bounds.box; } function addForce(forceName, forceFunction) { if (forceMap.has(forceName)) throw new Error('Force ' + forceName + ' is already added'); forceMap.set(forceName, forceFunction); forces.push(forceFunction); } function removeForce(forceName) { var forceIndex = forces.indexOf(forceMap.get(forceName)); if (forceIndex < 0) return; forces.splice(forceIndex, 1); forceMap.delete(forceName); } function getForces() { // TODO: Should I trust them or clone the forces? return forceMap; } function nbodyForce(/* iterationUmber */) { if (bodies.length === 0) return; quadTree.insertBodies(bodies); var i = bodies.length; while (i--) { var body = bodies[i]; if (!body.isPinned) { body.reset(); quadTree.updateBodyForce(body); dragForce.update(body); } } } function updateSpringForce() { var i = springs.length; while (i--) { springForce.update(springs[i]); } } } function expose(settings, target) { for (var key in settings) { augment(settings, target, key); } } function augment(source, target, key) { if (!source.hasOwnProperty(key)) return; if (typeof target[key] === 'function') { // this accessor is already defined. Ignore it return; } var sourceIsNumber = Number.isFinite(source[key]); if (sourceIsNumber) { target[key] = function (value) { if (value !== undefined) { if (!Number.isFinite(value)) throw new Error('Value of ' + key + ' should be a valid number.'); source[key] = value; return target; } return source[key]; }; } else { target[key] = function (value) { if (value !== undefined) { source[key] = value; return target; } return source[key]; }; } } ngraph_forcelayout.exports = createLayout; ngraph_forcelayout.exports.simulator = createPhysicsSimulator_1; var eventify = ngraph_events; /** * Creates force based layout for a given graph. * * @param {ngraph.graph} graph which needs to be laid out * @param {object} physicsSettings if you need custom settings * for physics simulator you can pass your own settings here. If it's not passed * a default one will be created. */ function createLayout(graph, physicsSettings) { if (!graph) { throw new Error('Graph structure cannot be undefined'); } var createSimulator = (physicsSettings && physicsSettings.createSimulator) || createPhysicsSimulator_1; var physicsSimulator = createSimulator(physicsSettings); if (Array.isArray(physicsSettings)) throw new Error('Physics settings is expected to be an object'); var nodeMass = defaultNodeMass; if (physicsSettings && typeof physicsSettings.nodeMass === 'function') { nodeMass = physicsSettings.nodeMass; } var nodeBodies = new Map(); var springs = {}; var bodiesCount = 0; var springTransform = physicsSimulator.settings.springTransform || noop; // Initialize physics with what we have in the graph: initPhysics(); listenToEvents(); var wasStable = false; var api = { /** * Performs one step of iterative layout algorithm * * @returns {boolean} true if the system should be considered stable; False otherwise. * The system is stable if no further call to `step()` can improve the layout. */ step: function() { if (bodiesCount === 0) { updateStableStatus(true); return true; } var lastMove = physicsSimulator.step(); // Save the movement in case if someone wants to query it in the step // callback. api.lastMove = lastMove; // Allow listeners to perform low-level actions after nodes are updated. api.fire('step'); var ratio = lastMove/bodiesCount; var isStableNow = ratio <= 0.01; // TODO: The number is somewhat arbitrary... updateStableStatus(isStableNow); return isStableNow; }, /** * For a given `nodeId` returns position */ getNodePosition: function (nodeId) { return getInitializedBody(nodeId).pos; }, /** * Sets position of a node to a given coordinates * @param {string} nodeId node identifier * @param {number} x position of a node * @param {number} y position of a node * @param {number=} z position of node (only if applicable to body) */ setNodePosition: function (nodeId) { var body = getInitializedBody(nodeId); body.setPosition.apply(body, Array.prototype.slice.call(arguments, 1)); }, /** * @returns {Object} Link position by link id * @returns {Object.from} {x, y} coordinates of link start * @returns {Object.to} {x, y} coordinates of link end */ getLinkPosition: function (linkId) { var spring = springs[linkId]; if (spring) { return { from: spring.from.pos, to: spring.to.pos }; } }, /** * @returns {Object} area required to fit in the graph. Object contains * `x1`, `y1` - top left coordinates * `x2`, `y2` - bottom right coordinates */ getGraphRect: function () { return physicsSimulator.getBBox(); }, /** * Iterates over each body in the layout simulator and performs a callback(body, nodeId) */ forEachBody: forEachBody, /* * Requests layout algorithm to pin/unpin node to its current position * Pinned nodes should not be affected by layout algorithm and always * remain at their position */ pinNode: function (node, isPinned) { var body = getInitializedBody(node.id); body.isPinned = !!isPinned; }, /** * Checks whether given graph's node is currently pinned */ isNodePinned: function (node) { return getInitializedBody(node.id).isPinned; }, /** * Request to release all resources */ dispose: function() { graph.off('changed', onGraphChanged); api.fire('disposed'); }, /** * Gets physical body for a given node id. If node is not found undefined * value is returned. */ getBody: getBody, /** * Gets spring for a given edge. * * @param {string} linkId link identifer. If two arguments are passed then * this argument is treated as formNodeId * @param {string=} toId when defined this parameter denotes head of the link * and first argument is treated as tail of the link (fromId) */ getSpring: getSpring, /** * Returns length of cumulative force vector. The closer this to zero - the more stable the system is */ getForceVectorLength: getForceVectorLength, /** * [Read only] Gets current physics simulator */ simulator: physicsSimulator, /** * Gets the graph that was used for layout */ graph: graph, /** * Gets amount of movement performed during last step operation */ lastMove: 0 }; eventify(api); return api; function updateStableStatus(isStableNow) { if (wasStable !== isStableNow) { wasStable = isStableNow; onStableChanged(isStableNow); } } function forEachBody(cb) { nodeBodies.forEach(cb); } function getForceVectorLength() { var fx = 0, fy = 0; forEachBody(function(body) { fx += Math.abs(body.force.x); fy += Math.abs(body.force.y); }); return Math.sqrt(fx * fx + fy * fy); } function getSpring(fromId, toId) { var linkId; if (toId === undefined) { if (typeof fromId !== 'object') { // assume fromId as a linkId: linkId = fromId; } else { // assume fromId to be a link object: linkId = fromId.id; } } else { // toId is defined, should grab link: var link = graph.hasLink(fromId, toId); if (!link) return; linkId = link.id; } return springs[linkId]; } function getBody(nodeId) { return nodeBodies.get(nodeId); } function listenToEvents() { graph.on('changed', onGraphChanged); } function onStableChanged(isStable) { api.fire('stable', isStable); } function onGraphChanged(changes) { for (var i = 0; i < changes.length; ++i) { var change = changes[i]; if (change.changeType === 'add') { if (change.node) { initBody(change.node.id); } if (change.link) { initLink(change.link); } } else if (change.changeType === 'remove') { if (change.node) { releaseNode(change.node); } if (change.link) { releaseLink(change.link); } } } bodiesCount = graph.getNodesCount(); } function initPhysics() { bodiesCount = 0; graph.forEachNode(function (node) { initBody(node.id); bodiesCount += 1; }); graph.forEachLink(initLink); } function initBody(nodeId) { var body = nodeBodies.get(nodeId); if (!body) { var node = graph.getNode(nodeId); if (!node) { throw new Error('initBody() was called with unknown node id'); } var pos = node.position; if (!pos) { var neighbors = getNeighborBodies(node); pos = physicsSimulator.getBestNewBodyPosition(neighbors); } body = physicsSimulator.addBodyAt(pos); body.id = nodeId; nodeBodies.set(nodeId, body); updateBodyMass(nodeId); if (isNodeOriginallyPinned(node)) { body.isPinned = true; } } } function releaseNode(node) { var nodeId = node.id; var body = nodeBodies.get(nodeId); if (body) { nodeBodies.delete(nodeId); physicsSimulator.removeBody(body); } } function initLink(link) { updateBodyMass(link.fromId); updateBodyMass(link.toId); var fromBody = nodeBodies.get(link.fromId), toBody = nodeBodies.get(link.toId), spring = physicsSimulator.addSpring(fromBody, toBody, link.length); springTransform(link, spring); springs[link.id] = spring; } function releaseLink(link) { var spring = springs[link.id]; if (spring) { var from = graph.getNode(link.fromId), to = graph.getNode(link.toId); if (from) updateBodyMass(from.id); if (to) updateBodyMass(to.id); delete springs[link.id]; physicsSimulator.removeSpring(spring); } } function getNeighborBodies(node) { // TODO: Could probably be done better on memory var neighbors = []; if (!node.links) { return neighbors; } var maxNeighbors = Math.min(node.links.length, 2); for (var i = 0; i < maxNeighbors; ++i) { var link = node.links[i]; var otherBody = link.fromId !== node.id ? nodeBodies.get(link.fromId) : nodeBodies.get(link.toId); if (otherBody && otherBody.pos) { neighbors.push(otherBody); } } return neighbors; } function updateBodyMass(nodeId) { var body = nodeBodies.get(nodeId); body.mass = nodeMass(nodeId); if (Number.isNaN(body.mass)) { throw new Error('Node mass should be a number'); } } /** * Checks whether graph node has in its settings pinned attribute, * which means layout algorithm cannot move it. Node can be marked * as pinned, if it has "isPinned" attribute, or when node.data has it. * * @param {Object} node a graph node to check * @return {Boolean} true if node should be treated as pinned; false otherwise. */ function isNodeOriginallyPinned(node) { return (node && (node.isPinned || (node.data && node.data.isPinned))); } function getInitializedBody(nodeId) { var body = nodeBodies.get(nodeId); if (!body) { initBody(nodeId); body = nodeBodies.get(nodeId); } return body; } /** * Calculates mass of a body, which corresponds to node with given id. * * @param {String|Number} nodeId identifier of a node, for which body mass needs to be calculated * @returns {Number} recommended mass of the body; */ function defaultNodeMass(nodeId) { var links = graph.getLinks(nodeId); if (!links) return 1; return 1 + links.length / 3.0; } } function noop() { } var forcelayout = ngraph_forcelayout.exports; /** * Returns a function, that, as long as it continues to be invoked, will not * be triggered. The function will be called after it stops being called for * N milliseconds. If `immediate` is passed, trigger the function on the * leading edge, instead of the trailing. The function also has a property 'clear' * that is a function which will clear the timer to prevent previously scheduled executions. * * @source underscore.js * @see http://unscriptable.com/2009/03/20/debouncing-javascript-methods/ * @param {Function} function to wrap * @param {Number} timeout in ms (`100`) * @param {Boolean} whether to execute at the beginning (`false`) * @api public */ function debounce(func, wait, immediate){ var timeout, args, context, timestamp, result; if (null == wait) wait = 100; function later() { var last = Date.now() - timestamp; if (last < wait && last >= 0) { timeout = setTimeout(later, wait - last); } else { timeout = null; if (!immediate) { result = func.apply(context, args); context = args = null; } } } var debounced = function(){ context = this; args = arguments; timestamp = Date.now(); var callNow = immediate && !timeout; if (!timeout) timeout = setTimeout(later, wait); if (callNow) { result = func.apply(context, args); context = args = null; } return result; }; debounced.clear = function() { if (timeout) { clearTimeout(timeout); timeout = null; } }; debounced.flush = function() { if (timeout) { result = func.apply(context, args); context = args = null; clearTimeout(timeout); timeout = null; } }; return debounced; } // Adds compatibility for ES modules debounce.debounce = debounce; var debounce_1 = debounce; function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _slicedToArray$2(arr, i) { return _arrayWithHoles$2(arr) || _iterableToArrayLimit$2(arr, i) || _unsupportedIterableToArray$2(arr, i) || _nonIterableRest$2(); } function _arrayWithHoles$2(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArrayLimit$2(arr, i) { var _i = arr && (typeof Symbol !== "undefined" && arr[Symbol.iterator] || arr["@@iterator"]); if (_i == null) return; var _arr = []; var _n = true; var _d = false; var _s, _e; try { for (_i = _i.call(arr); !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"] != null) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } function _unsupportedIterableToArray$2(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$2(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$2(o, minLen); } function _arrayLikeToArray$2(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableRest$2() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var Prop = function Prop(name, _ref) { var _ref$default = _ref["default"], defaultVal = _ref$default === void 0 ? null : _ref$default, _ref$triggerUpdate = _ref.triggerUpdate, triggerUpdate = _ref$triggerUpdate === void 0 ? true : _ref$triggerUpdate, _ref$onChange = _ref.onChange, onChange = _ref$onChange === void 0 ? function (newVal, state) {} : _ref$onChange; _classCallCheck(this, Prop); this.name = name; this.defaultVal = defaultVal; this.triggerUpdate = triggerUpdate; this.onChange = onChange; }; function index$2 (_ref2) { var _ref2$stateInit = _ref2.stateInit, stateInit = _ref2$stateInit === void 0 ? function () { return {}; } : _ref2$stateInit, _ref2$props = _ref2.props, rawProps = _ref2$props === void 0 ? {} : _ref2$props, _ref2$methods = _ref2.methods, methods = _ref2$methods === void 0 ? {} : _ref2$methods, _ref2$aliases = _ref2.aliases, aliases = _ref2$aliases === void 0 ? {} : _ref2$aliases, _ref2$init = _ref2.init, initFn = _ref2$init === void 0 ? function () {} : _ref2$init, _ref2$update = _ref2.update, updateFn = _ref2$update === void 0 ? function () {} : _ref2$update; // Parse props into Prop instances var props = Object.keys(rawProps).map(function (propName) { return new Prop(propName, rawProps[propName]); }); return function () { var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {}; // Holds component state var state = Object.assign({}, stateInit instanceof Function ? stateInit(options) : stateInit, // Support plain objects for backwards compatibility { initialised: false }); // keeps track of which props triggered an update var changedProps = {}; // Component constructor function comp(nodeElement) { initStatic(nodeElement, options); digest(); return comp; } var initStatic = function initStatic(nodeElement, options) { initFn.call(comp, nodeElement, state, options); state.initialised = true; }; var digest = debounce_1(function () { if (!state.initialised) { return; } updateFn.call(comp, state, changedProps); changedProps = {}; }, 1); // Getter/setter methods props.forEach(function (prop) { comp[prop.name] = getSetProp(prop); function getSetProp(_ref3) { var prop = _ref3.name, _ref3$triggerUpdate = _ref3.triggerUpdate, redigest = _ref3$triggerUpdate === void 0 ? false : _ref3$triggerUpdate, _ref3$onChange = _ref3.onChange, onChange = _ref3$onChange === void 0 ? function (newVal, state) {} : _ref3$onChange, _ref3$defaultVal = _ref3.defaultVal, defaultVal = _ref3$defaultVal === void 0 ? null : _ref3$defaultVal; return function (_) { var curVal = state[prop]; if (!arguments.length) { return curVal; } // Getter mode var val = _ === undefined ? defaultVal : _; // pick default if value passed is undefined state[prop] = val; onChange.call(comp, val, state, curVal); // track changed props !changedProps.hasOwnProperty(prop) && (changedProps[prop] = curVal); if (redigest) { digest(); } return comp; }; } }); // Other methods Object.keys(methods).forEach(function (methodName) { comp[methodName] = function () { var _methods$methodName; for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } return (_methods$methodName = methods[methodName]).call.apply(_methods$methodName, [comp, state].concat(args)); }; }); // Link aliases Object.entries(aliases).forEach(function (_ref4) { var _ref5 = _slicedToArray$2(_ref4, 2), alias = _ref5[0], target = _ref5[1]; return comp[alias] = comp[target]; }); // Reset all component props to their default value comp.resetProps = function () { props.forEach(function (prop) { comp[prop.name](prop.defaultVal); }); return comp; }; // comp.resetProps(); // Apply all prop defaults state._rerender = digest; // Expose digest method return comp; }; } var index$1 = (function (p) { return p instanceof Function ? p // fn : typeof p === 'string' ? function (obj) { return obj[p]; } // property name : function (obj) { return p; }; }); // constant class InternMap extends Map { constructor(entries, key = keyof) { super(); Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}}); if (entries != null) for (const [key, value] of entries) this.set(key, value); } get(key) { return super.get(intern_get(this, key)); } has(key) { return super.has(intern_get(this, key)); } set(key, value) { return super.set(intern_set(this, key), value); } delete(key) { return super.delete(intern_delete(this, key)); } } function intern_get({_intern, _key}, value) { const key = _key(value); return _intern.has(key) ? _intern.get(key) : value; } function intern_set({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) return _intern.get(key); _intern.set(key, value); return value; } function intern_delete({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) { value = _intern.get(value); _intern.delete(key); } return value; } function keyof(value) { return value !== null && typeof value === "object" ? value.valueOf() : value; } function max(values, valueof) { let max; if (valueof === undefined) { for (const value of values) { if (value != null && (max < value || (max === undefined && value >= value))) { max = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (max < value || (max === undefined && value >= value))) { max = value; } } } return max; } function min(values, valueof) { let min; if (valueof === undefined) { for (const value of values) { if (value != null && (min > value || (min === undefined && value >= value))) { min = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (min > value || (min === undefined && value >= value))) { min = value; } } } return min; } function _objectWithoutPropertiesLoose$1(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _objectWithoutProperties$1(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose$1(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; } function _slicedToArray$1(arr, i) { return _arrayWithHoles$1(arr) || _iterableToArrayLimit$1(arr, i) || _unsupportedIterableToArray$1(arr, i) || _nonIterableRest$1(); } function _toConsumableArray$1(arr) { return _arrayWithoutHoles$1(arr) || _iterableToArray$1(arr) || _unsupportedIterableToArray$1(arr) || _nonIterableSpread$1(); } function _arrayWithoutHoles$1(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$1(arr); } function _arrayWithHoles$1(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray$1(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _iterableToArrayLimit$1(arr, i) { var _i = arr && (typeof Symbol !== "undefined" && arr[Symbol.iterator] || arr["@@iterator"]); if (_i == null) return; var _arr = []; var _n = true; var _d = false; var _s, _e; try { for (_i = _i.call(arr); !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"] != null) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } function _unsupportedIterableToArray$1(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$1(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$1(o, minLen); } function _arrayLikeToArray$1(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$1() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest$1() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _toPrimitive(input, hint) { if (typeof input !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (typeof res !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); } function _toPropertyKey(arg) { var key = _toPrimitive(arg, "string"); return typeof key === "symbol" ? key : String(key); } var index = (function () { var list = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : []; var keyAccessors = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; var multiItem = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : true; var flattenKeys = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : false; var keys = (keyAccessors instanceof Array ? keyAccessors.length ? keyAccessors : [undefined] : [keyAccessors]).map(function (key) { return { keyAccessor: key, isProp: !(key instanceof Function) }; }); var indexedResult = list.reduce(function (res, item) { var iterObj = res; var itemVal = item; keys.forEach(function (_ref, idx) { var keyAccessor = _ref.keyAccessor, isProp = _ref.isProp; var key; if (isProp) { var _itemVal = itemVal, propVal = _itemVal[keyAccessor], rest = _objectWithoutProperties$1(_itemVal, [keyAccessor].map(_toPropertyKey)); key = propVal; itemVal = rest; } else { key = keyAccessor(itemVal, idx); } if (idx + 1 < keys.length) { if (!iterObj.hasOwnProperty(key)) { iterObj[key] = {}; } iterObj = iterObj[key]; } else { // Leaf key if (multiItem) { if (!iterObj.hasOwnProperty(key)) { iterObj[key] = []; } iterObj[key].push(itemVal); } else { iterObj[key] = itemVal; } } }); return res; }, {}); if (multiItem instanceof Function) { // Reduce leaf multiple values (function reduce(node) { var level = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 1; if (level === keys.length) { Object.keys(node).forEach(function (k) { return node[k] = multiItem(node[k]); }); } else { Object.values(node).forEach(function (child) { return reduce(child, level + 1); }); } })(indexedResult); // IIFE } var result = indexedResult; if (flattenKeys) { // flatten into array result = []; (function flatten(node) { var accKeys = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; if (accKeys.length === keys.length) { result.push({ keys: accKeys, vals: node }); } else { Object.entries(node).forEach(function (_ref2) { var _ref3 = _slicedToArray$1(_ref2, 2), key = _ref3[0], val = _ref3[1]; return flatten(val, [].concat(_toConsumableArray$1(accKeys), [key])); }); } })(indexedResult); //IIFE if (keyAccessors instanceof Array && keyAccessors.length === 0 && result.length === 1) { // clear keys if there's no key accessors (single result) result[0].keys = []; } } return result; }); function ownKeys(object, enumerableOnly) { var keys = Object.keys(object); if (Object.getOwnPropertySymbols) { var symbols = Object.getOwnPropertySymbols(object); if (enumerableOnly) { symbols = symbols.filter(function (sym) { return Object.getOwnPropertyDescriptor(object, sym).enumerable; }); } keys.push.apply(keys, symbols); } return keys; } function _objectSpread2(target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i] != null ? arguments[i] : {}; if (i % 2) { ownKeys(Object(source), true).forEach(function (key) { _defineProperty(target, key, source[key]); }); } else if (Object.getOwnPropertyDescriptors) { Object.defineProperties(target, Object.getOwnPropertyDescriptors(source)); } else { ownKeys(Object(source)).forEach(function (key) { Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key)); }); } } return target; } function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; } function _slicedToArray(arr, i) { return _arrayWithHoles(arr) || _iterableToArrayLimit(arr, i) || _unsupportedIterableToArray(arr, i) || _nonIterableRest(); } function _toConsumableArray(arr) { return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread(); } function _arrayWithoutHoles(arr) { if (Array.isArray(arr)) return _arrayLikeToArray(arr); } function _arrayWithHoles(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _iterableToArrayLimit(arr, i) { var _i = arr && (typeof Symbol !== "undefined" && arr[Symbol.iterator] || arr["@@iterator"]); if (_i == null) return; var _arr = []; var _n = true; var _d = false; var _s, _e; try { for (_i = _i.call(arr); !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"] != null) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); } function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function diffArrays(prev, next, idAccessor) { var result = { enter: [], update: [], exit: [] }; if (!idAccessor) { // use object references for comparison var prevSet = new Set(prev); var nextSet = new Set(next); new Set([].concat(_toConsumableArray(prevSet), _toConsumableArray(nextSet))).forEach(function (item) { var type = !prevSet.has(item) ? 'enter' : !nextSet.has(item) ? 'exit' : 'update'; result[type].push(type === 'update' ? [item, item] : item); }); } else { // compare by id (duplicate keys are ignored) var prevById = index(prev, idAccessor, false); var nextById = index(next, idAccessor, false); var byId = Object.assign({}, prevById, nextById); Object.entries(byId).forEach(function (_ref) { var _ref2 = _slicedToArray(_ref, 2), id = _ref2[0], item = _ref2[1]; var type = !prevById.hasOwnProperty(id) ? 'enter' : !nextById.hasOwnProperty(id) ? 'exit' : 'update'; result[type].push(type === 'update' ? [prevById[id], nextById[id]] : item); }); } return result; } function dataBindDiff(data, existingObjs, _ref3) { var _ref3$objBindAttr = _ref3.objBindAttr, objBindAttr = _ref3$objBindAttr === void 0 ? '__obj' : _ref3$objBindAttr, _ref3$dataBindAttr = _ref3.dataBindAttr, dataBindAttr = _ref3$dataBindAttr === void 0 ? '__data' : _ref3$dataBindAttr, idAccessor = _ref3.idAccessor, _ref3$purge = _ref3.purge, purge = _ref3$purge === void 0 ? false : _ref3$purge; var isObjValid = function isObjValid(obj) { return obj.hasOwnProperty(dataBindAttr); }; var removeObjs = existingObjs.filter(function (obj) { return !isObjValid(obj); }); var prevD = existingObjs.filter(isObjValid).map(function (obj) { return obj[dataBindAttr]; }); var nextD = data; var diff = purge ? { enter: nextD, exit: prevD, update: [] } // don't diff data in purge mode : diffArrays(prevD, nextD, idAccessor); diff.update = diff.update.map(function (_ref4) { var _ref5 = _slicedToArray(_ref4, 2), prevD = _ref5[0], nextD = _ref5[1]; if (prevD !== nextD) { // transfer obj to new data point (if different) nextD[objBindAttr] = prevD[objBindAttr]; nextD[objBindAttr][dataBindAttr] = nextD; } return nextD; }); diff.exit = diff.exit.concat(removeObjs.map(function (obj) { return _defineProperty({}, objBindAttr, obj); })); return diff; } function viewDigest(data, existingObjs, // list appendObj, // item => {...} function removeObj, // item => {...} function _ref7) { var _ref7$createObj = _ref7.createObj, createObj = _ref7$createObj === void 0 ? function (d) { return {}; } : _ref7$createObj, _ref7$updateObj = _ref7.updateObj, updateObj = _ref7$updateObj === void 0 ? function (obj, d) {} : _ref7$updateObj, _ref7$exitObj = _ref7.exitObj, exitObj = _ref7$exitObj === void 0 ? function (obj) {} : _ref7$exitObj, _ref7$objBindAttr = _ref7.objBindAttr, objBindAttr = _ref7$objBindAttr === void 0 ? '__obj' : _ref7$objBindAttr, _ref7$dataBindAttr = _ref7.dataBindAttr, dataBindAttr = _ref7$dataBindAttr === void 0 ? '__data' : _ref7$dataBindAttr, dataDiffOptions = _objectWithoutProperties(_ref7, ["createObj", "updateObj", "exitObj", "objBindAttr", "dataBindAttr"]); var _dataBindDiff = dataBindDiff(data, existingObjs, _objectSpread2({ objBindAttr: objBindAttr, dataBindAttr: dataBindAttr }, dataDiffOptions)), enter = _dataBindDiff.enter, update = _dataBindDiff.update, exit = _dataBindDiff.exit; // Remove exiting points exit.forEach(function (d) { var obj = d[objBindAttr]; delete d[objBindAttr]; // unbind obj exitObj(obj); removeObj(obj); }); var newObjs = createObjs(enter); var pointsData = [].concat(_toConsumableArray(enter), _toConsumableArray(update)); updateObjs(pointsData); // Add new points newObjs.forEach(appendObj); // function createObjs(data) { var newObjs = []; data.forEach(function (d) { var obj = createObj(d); if (obj) { obj[dataBindAttr] = d; d[objBindAttr] = obj; newObjs.push(obj); } }); return newObjs; } function updateObjs(data) { data.forEach(function (d) { var obj = d[objBindAttr]; if (obj) { obj[dataBindAttr] = d; updateObj(obj, d); } }); } } var materialDispose = function materialDispose(material) { if (material instanceof Array) { material.forEach(materialDispose); } else { if (material.map) { material.map.dispose(); } material.dispose(); } }; var deallocate = function deallocate(obj) { if (obj.geometry) { obj.geometry.dispose(); } if (obj.material) { materialDispose(obj.material); } if (obj.texture) { obj.texture.dispose(); } if (obj.children) { obj.children.forEach(deallocate); } }; var emptyObject = function emptyObject(obj) { while (obj.children.length) { var childObj = obj.children[0]; obj.remove(childObj); deallocate(childObj); } }; var _excluded = ["objFilter"]; function threeDigest(data, scene) { var _ref = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}; var _ref$objFilter = _ref.objFilter, objFilter = _ref$objFilter === void 0 ? function () { return true; } : _ref$objFilter, options = _objectWithoutProperties$2(_ref, _excluded); return viewDigest(data, scene.children.filter(objFilter), function (obj) { return scene.add(obj); }, function (obj) { scene.remove(obj); emptyObject(obj); }, _objectSpread2$1({ objBindAttr: '__threeObj' }, options)); } function initRange(domain, range) { switch (arguments.length) { case 0: break; case 1: this.range(domain); break; default: this.range(range).domain(domain); break; } return this; } const implicit = Symbol("implicit"); function ordinal() { var index = new InternMap(), domain = [], range = [], unknown = implicit; function scale(d) { let i = index.get(d); if (i === undefined) { if (unknown !== implicit) return unknown; index.set(d, i = domain.push(d) - 1); } return range[i % range.length]; } scale.domain = function(_) { if (!arguments.length) return domain.slice(); domain = [], index = new InternMap(); for (const value of _) { if (index.has(value)) continue; index.set(value, domain.push(value) - 1); } return scale; }; scale.range = function(_) { return arguments.length ? (range = Array.from(_), scale) : range.slice(); }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.copy = function() { return ordinal(domain, range).unknown(unknown); }; initRange.apply(scale, arguments); return scale; } function colors(specifier) { var n = specifier.length / 6 | 0, colors = new Array(n), i = 0; while (i < n) colors[i] = "#" + specifier.slice(i * 6, ++i * 6); return colors; } var schemePaired = colors("a6cee31f78b4b2df8a33a02cfb9a99e31a1cfdbf6fff7f00cab2d66a3d9affff99b15928"); var tinycolor = {exports: {}}; (function (module) { // TinyColor v1.4.2 // https://github.com/bgrins/TinyColor // Brian Grinstead, MIT License (function(Math) { var trimLeft = /^\s+/, trimRight = /\s+$/, tinyCounter = 0, mathRound = Math.round, mathMin = Math.min, mathMax = Math.max, mathRandom = Math.random; function tinycolor (color, opts) { color = (color) ? color : ''; opts = opts || { }; // If input is already a tinycolor, return itself if (color instanceof tinycolor) { return color; } // If we are called as a function, call using new instead if (!(this instanceof tinycolor)) { return new tinycolor(color, opts); } var rgb = inputToRGB(color); this._originalInput = color, this._r = rgb.r, this._g = rgb.g, this._b = rgb.b, this._a = rgb.a, this._roundA = mathRound(100*this._a) / 100, this._format = opts.format || rgb.format; this._gradientType = opts.gradientType; // Don't let the range of [0,255] come back in [0,1]. // Potentially lose a little bit of precision here, but will fix issues where // .5 gets interpreted as half of the total, instead of half of 1 // If it was supposed to be 128, this was already taken care of by `inputToRgb` if (this._r < 1) { this._r = mathRound(this._r); } if (this._g < 1) { this._g = mathRound(this._g); } if (this._b < 1) { this._b = mathRound(this._b); } this._ok = rgb.ok; this._tc_id = tinyCounter++; } tinycolor.prototype = { isDark: function() { return this.getBrightness() < 128; }, isLight: function() { return !this.isDark(); }, isValid: function() { return this._ok; }, getOriginalInput: function() { return this._originalInput; }, getFormat: function() { return this._format; }, getAlpha: function() { return this._a; }, getBrightness: function() { //http://www.w3.org/TR/AERT#color-contrast var rgb = this.toRgb(); return (rgb.r * 299 + rgb.g * 587 + rgb.b * 114) / 1000; }, getLuminance: function() { //http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef var rgb = this.toRgb(); var RsRGB, GsRGB, BsRGB, R, G, B; RsRGB = rgb.r/255; GsRGB = rgb.g/255; BsRGB = rgb.b/255; if (RsRGB <= 0.03928) {R = RsRGB / 12.92;} else {R = Math.pow(((RsRGB + 0.055) / 1.055), 2.4);} if (GsRGB <= 0.03928) {G = GsRGB / 12.92;} else {G = Math.pow(((GsRGB + 0.055) / 1.055), 2.4);} if (BsRGB <= 0.03928) {B = BsRGB / 12.92;} else {B = Math.pow(((BsRGB + 0.055) / 1.055), 2.4);} return (0.2126 * R) + (0.7152 * G) + (0.0722 * B); }, setAlpha: function(value) { this._a = boundAlpha(value); this._roundA = mathRound(100*this._a) / 100; return this; }, toHsv: function() { var hsv = rgbToHsv(this._r, this._g, this._b); return { h: hsv.h * 360, s: hsv.s, v: hsv.v, a: this._a }; }, toHsvString: function() { var hsv = rgbToHsv(this._r, this._g, this._b); var h = mathRound(hsv.h * 360), s = mathRound(hsv.s * 100), v = mathRound(hsv.v * 100); return (this._a == 1) ? "hsv(" + h + ", " + s + "%, " + v + "%)" : "hsva(" + h + ", " + s + "%, " + v + "%, "+ this._roundA + ")"; }, toHsl: function() { var hsl = rgbToHsl(this._r, this._g, this._b); return { h: hsl.h * 360, s: hsl.s, l: hsl.l, a: this._a }; }, toHslString: function() { var hsl = rgbToHsl(this._r, this._g, this._b); var h = mathRound(hsl.h * 360), s = mathRound(hsl.s * 100), l = mathRound(hsl.l * 100); return (this._a == 1) ? "hsl(" + h + ", " + s + "%, " + l + "%)" : "hsla(" + h + ", " + s + "%, " + l + "%, "+ this._roundA + ")"; }, toHex: function(allow3Char) { return rgbToHex(this._r, this._g, this._b, allow3Char); }, toHexString: function(allow3Char) { return '#' + this.toHex(allow3Char); }, toHex8: function(allow4Char) { return rgbaToHex(this._r, this._g, this._b, this._a, allow4Char); }, toHex8String: function(allow4Char) { return '#' + this.toHex8(allow4Char); }, toRgb: function() { return { r: mathRound(this._r), g: mathRound(this._g), b: mathRound(this._b), a: this._a }; }, toRgbString: function() { return (this._a == 1) ? "rgb(" + mathRound(this._r) + ", " + mathRound(this._g) + ", " + mathRound(this._b) + ")" : "rgba(" + mathRound(this._r) + ", " + mathRound(this._g) + ", " + mathRound(this._b) + ", " + this._roundA + ")"; }, toPercentageRgb: function() { return { r: mathRound(bound01(this._r, 255) * 100) + "%", g: mathRound(bound01(this._g, 255) * 100) + "%", b: mathRound(bound01(this._b, 255) * 100) + "%", a: this._a }; }, toPercentageRgbString: function() { return (this._a == 1) ? "rgb(" + mathRound(bound01(this._r, 255) * 100) + "%, " + mathRound(bound01(this._g, 255) * 100) + "%, " + mathRound(bound01(this._b, 255) * 100) + "%)" : "rgba(" + mathRound(bound01(this._r, 255) * 100) + "%, " + mathRound(bound01(this._g, 255) * 100) + "%, " + mathRound(bound01(this._b, 255) * 100) + "%, " + this._roundA + ")"; }, toName: function() { if (this._a === 0) { return "transparent"; } if (this._a < 1) { return false; } return hexNames[rgbToHex(this._r, this._g, this._b, true)] || false; }, toFilter: function(secondColor) { var hex8String = '#' + rgbaToArgbHex(this._r, this._g, this._b, this._a); var secondHex8String = hex8String; var gradientType = this._gradientType ? "GradientType = 1, " : ""; if (secondColor) { var s = tinycolor(secondColor); secondHex8String = '#' + rgbaToArgbHex(s._r, s._g, s._b, s._a); } return "progid:DXImageTransform.Microsoft.gradient("+gradientType+"startColorstr="+hex8String+",endColorstr="+secondHex8String+")"; }, toString: function(format) { var formatSet = !!format; format = format || this._format; var formattedString = false; var hasAlpha = this._a < 1 && this._a >= 0; var needsAlphaFormat = !formatSet && hasAlpha && (format === "hex" || format === "hex6" || format === "hex3" || format === "hex4" || format === "hex8" || format === "name"); if (needsAlphaFormat) { // Special case for "transparent", all other non-alpha formats // will return rgba when there is transparency. if (format === "name" && this._a === 0) { return this.toName(); } return this.toRgbString(); } if (format === "rgb") { formattedString = this.toRgbString(); } if (format === "prgb") { formattedString = this.toPercentageRgbString(); } if (format === "hex" || format === "hex6") { formattedString = this.toHexString(); } if (format === "hex3") { formattedString = this.toHexString(true); } if (format === "hex4") { formattedString = this.toHex8String(true); } if (format === "hex8") { formattedString = this.toHex8String(); } if (format === "name") { formattedString = this.toName(); } if (format === "hsl") { formattedString = this.toHslString(); } if (format === "hsv") { formattedString = this.toHsvString(); } return formattedString || this.toHexString(); }, clone: function() { return tinycolor(this.toString()); }, _applyModification: function(fn, args) { var color = fn.apply(null, [this].concat([].slice.call(args))); this._r = color._r; this._g = color._g; this._b = color._b; this.setAlpha(color._a); return this; }, lighten: function() { return this._applyModification(lighten, arguments); }, brighten: function() { return this._applyModification(brighten, arguments); }, darken: function() { return this._applyModification(darken, arguments); }, desaturate: function() { return this._applyModification(desaturate, arguments); }, saturate: function() { return this._applyModification(saturate, arguments); }, greyscale: function() { return this._applyModification(greyscale, arguments); }, spin: function() { return this._applyModification(spin, arguments); }, _applyCombination: function(fn, args) { return fn.apply(null, [this].concat([].slice.call(args))); }, analogous: function() { return this._applyCombination(analogous, arguments); }, complement: function() { return this._applyCombination(complement, arguments); }, monochromatic: function() { return this._applyCombination(monochromatic, arguments); }, splitcomplement: function() { return this._applyCombination(splitcomplement, arguments); }, triad: function() { return this._applyCombination(triad, arguments); }, tetrad: function() { return this._applyCombination(tetrad, arguments); } }; // If input is an object, force 1 into "1.0" to handle ratios properly // String input requires "1.0" as input, so 1 will be treated as 1 tinycolor.fromRatio = function(color, opts) { if (typeof color == "object") { var newColor = {}; for (var i in color) { if (color.hasOwnProperty(i)) { if (i === "a") { newColor[i] = color[i]; } else { newColor[i] = convertToPercentage(color[i]); } } } color = newColor; } return tinycolor(color, opts); }; // Given a string or object, convert that input to RGB // Possible string inputs: // // "red" // "#f00" or "f00" // "#ff0000" or "ff0000" // "#ff000000" or "ff000000" // "rgb 255 0 0" or "rgb (255, 0, 0)" // "rgb 1.0 0 0" or "rgb (1, 0, 0)" // "rgba (255, 0, 0, 1)" or "rgba 255, 0, 0, 1" // "rgba (1.0, 0, 0, 1)" or "rgba 1.0, 0, 0, 1" // "hsl(0, 100%, 50%)" or "hsl 0 100% 50%" // "hsla(0, 100%, 50%, 1)" or "hsla 0 100% 50%, 1" // "hsv(0, 100%, 100%)" or "hsv 0 100% 100%" // function inputToRGB(color) { var rgb = { r: 0, g: 0, b: 0 }; var a = 1; var s = null; var v = null; var l = null; var ok = false; var format = false; if (typeof color == "string") { color = stringInputToObject(color); } if (typeof color == "object") { if (isValidCSSUnit(color.r) && isValidCSSUnit(color.g) && isValidCSSUnit(color.b)) { rgb = rgbToRgb(color.r, color.g, color.b); ok = true; format = String(color.r).substr(-1) === "%" ? "prgb" : "rgb"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.v)) { s = convertToPercentage(color.s); v = convertToPercentage(color.v); rgb = hsvToRgb(color.h, s, v); ok = true; format = "hsv"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.l)) { s = convertToPercentage(color.s); l = convertToPercentage(color.l); rgb = hslToRgb(color.h, s, l); ok = true; format = "hsl"; } if (color.hasOwnProperty("a")) { a = color.a; } } a = boundAlpha(a); return { ok: ok, format: color.format || format, r: mathMin(255, mathMax(rgb.r, 0)), g: mathMin(255, mathMax(rgb.g, 0)), b: mathMin(255, mathMax(rgb.b, 0)), a: a }; } // Conversion Functions // -------------------- // `rgbToHsl`, `rgbToHsv`, `hslToRgb`, `hsvToRgb` modified from: // // `rgbToRgb` // Handle bounds / percentage checking to conform to CSS color spec // // *Assumes:* r, g, b in [0, 255] or [0, 1] // *Returns:* { r, g, b } in [0, 255] function rgbToRgb(r, g, b){ return { r: bound01(r, 255) * 255, g: bound01(g, 255) * 255, b: bound01(b, 255) * 255 }; } // `rgbToHsl` // Converts an RGB color value to HSL. // *Assumes:* r, g, and b are contained in [0, 255] or [0, 1] // *Returns:* { h, s, l } in [0,1] function rgbToHsl(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = mathMax(r, g, b), min = mathMin(r, g, b); var h, s, l = (max + min) / 2; if(max == min) { h = s = 0; // achromatic } else { var d = max - min; s = l > 0.5 ? d / (2 - max - min) : d / (max + min); switch(max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, l: l }; } // `hslToRgb` // Converts an HSL color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and l are contained [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hslToRgb(h, s, l) { var r, g, b; h = bound01(h, 360); s = bound01(s, 100); l = bound01(l, 100); function hue2rgb(p, q, t) { if(t < 0) t += 1; if(t > 1) t -= 1; if(t < 1/6) return p + (q - p) * 6 * t; if(t < 1/2) return q; if(t < 2/3) return p + (q - p) * (2/3 - t) * 6; return p; } if(s === 0) { r = g = b = l; // achromatic } else { var q = l < 0.5 ? l * (1 + s) : l + s - l * s; var p = 2 * l - q; r = hue2rgb(p, q, h + 1/3); g = hue2rgb(p, q, h); b = hue2rgb(p, q, h - 1/3); } return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHsv` // Converts an RGB color value to HSV // *Assumes:* r, g, and b are contained in the set [0, 255] or [0, 1] // *Returns:* { h, s, v } in [0,1] function rgbToHsv(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = mathMax(r, g, b), min = mathMin(r, g, b); var h, s, v = max; var d = max - min; s = max === 0 ? 0 : d / max; if(max == min) { h = 0; // achromatic } else { switch(max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, v: v }; } // `hsvToRgb` // Converts an HSV color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and v are contained in [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hsvToRgb(h, s, v) { h = bound01(h, 360) * 6; s = bound01(s, 100); v = bound01(v, 100); var i = Math.floor(h), f = h - i, p = v * (1 - s), q = v * (1 - f * s), t = v * (1 - (1 - f) * s), mod = i % 6, r = [v, q, p, p, t, v][mod], g = [t, v, v, q, p, p][mod], b = [p, p, t, v, v, q][mod]; return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHex` // Converts an RGB color to hex // Assumes r, g, and b are contained in the set [0, 255] // Returns a 3 or 6 character hex function rgbToHex(r, g, b, allow3Char) { var hex = [ pad2(mathRound(r).toString(16)), pad2(mathRound(g).toString(16)), pad2(mathRound(b).toString(16)) ]; // Return a 3 character hex if possible if (allow3Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0); } return hex.join(""); } // `rgbaToHex` // Converts an RGBA color plus alpha transparency to hex // Assumes r, g, b are contained in the set [0, 255] and // a in [0, 1]. Returns a 4 or 8 character rgba hex function rgbaToHex(r, g, b, a, allow4Char) { var hex = [ pad2(mathRound(r).toString(16)), pad2(mathRound(g).toString(16)), pad2(mathRound(b).toString(16)), pad2(convertDecimalToHex(a)) ]; // Return a 4 character hex if possible if (allow4Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1) && hex[3].charAt(0) == hex[3].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0) + hex[3].charAt(0); } return hex.join(""); } // `rgbaToArgbHex` // Converts an RGBA color to an ARGB Hex8 string // Rarely used, but required for "toFilter()" function rgbaToArgbHex(r, g, b, a) { var hex = [ pad2(convertDecimalToHex(a)), pad2(mathRound(r).toString(16)), pad2(mathRound(g).toString(16)), pad2(mathRound(b).toString(16)) ]; return hex.join(""); } // `equals` // Can be called with any tinycolor input tinycolor.equals = function (color1, color2) { if (!color1 || !color2) { return false; } return tinycolor(color1).toRgbString() == tinycolor(color2).toRgbString(); }; tinycolor.random = function() { return tinycolor.fromRatio({ r: mathRandom(), g: mathRandom(), b: mathRandom() }); }; // Modification Functions // ---------------------- // Thanks to less.js for some of the basics here // function desaturate(color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.s -= amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function saturate(color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.s += amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function greyscale(color) { return tinycolor(color).desaturate(100); } function lighten (color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.l += amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } function brighten(color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var rgb = tinycolor(color).toRgb(); rgb.r = mathMax(0, mathMin(255, rgb.r - mathRound(255 * - (amount / 100)))); rgb.g = mathMax(0, mathMin(255, rgb.g - mathRound(255 * - (amount / 100)))); rgb.b = mathMax(0, mathMin(255, rgb.b - mathRound(255 * - (amount / 100)))); return tinycolor(rgb); } function darken (color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.l -= amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } // Spin takes a positive or negative amount within [-360, 360] indicating the change of hue. // Values outside of this range will be wrapped into this range. function spin(color, amount) { var hsl = tinycolor(color).toHsl(); var hue = (hsl.h + amount) % 360; hsl.h = hue < 0 ? 360 + hue : hue; return tinycolor(hsl); } // Combination Functions // --------------------- // Thanks to jQuery xColor for some of the ideas behind these // function complement(color) { var hsl = tinycolor(color).toHsl(); hsl.h = (hsl.h + 180) % 360; return tinycolor(hsl); } function triad(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [ tinycolor(color), tinycolor({ h: (h + 120) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 240) % 360, s: hsl.s, l: hsl.l }) ]; } function tetrad(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [ tinycolor(color), tinycolor({ h: (h + 90) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 180) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 270) % 360, s: hsl.s, l: hsl.l }) ]; } function splitcomplement(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [ tinycolor(color), tinycolor({ h: (h + 72) % 360, s: hsl.s, l: hsl.l}), tinycolor({ h: (h + 216) % 360, s: hsl.s, l: hsl.l}) ]; } function analogous(color, results, slices) { results = results || 6; slices = slices || 30; var hsl = tinycolor(color).toHsl(); var part = 360 / slices; var ret = [tinycolor(color)]; for (hsl.h = ((hsl.h - (part * results >> 1)) + 720) % 360; --results; ) { hsl.h = (hsl.h + part) % 360; ret.push(tinycolor(hsl)); } return ret; } function monochromatic(color, results) { results = results || 6; var hsv = tinycolor(color).toHsv(); var h = hsv.h, s = hsv.s, v = hsv.v; var ret = []; var modification = 1 / results; while (results--) { ret.push(tinycolor({ h: h, s: s, v: v})); v = (v + modification) % 1; } return ret; } // Utility Functions // --------------------- tinycolor.mix = function(color1, color2, amount) { amount = (amount === 0) ? 0 : (amount || 50); var rgb1 = tinycolor(color1).toRgb(); var rgb2 = tinycolor(color2).toRgb(); var p = amount / 100; var rgba = { r: ((rgb2.r - rgb1.r) * p) + rgb1.r, g: ((rgb2.g - rgb1.g) * p) + rgb1.g, b: ((rgb2.b - rgb1.b) * p) + rgb1.b, a: ((rgb2.a - rgb1.a) * p) + rgb1.a }; return tinycolor(rgba); }; // Readability Functions // --------------------- // false // tinycolor.isReadable("#000", "#111",{level:"AA",size:"large"}) => false tinycolor.isReadable = function(color1, color2, wcag2) { var readability = tinycolor.readability(color1, color2); var wcag2Parms, out; out = false; wcag2Parms = validateWCAG2Parms(wcag2); switch (wcag2Parms.level + wcag2Parms.size) { case "AAsmall": case "AAAlarge": out = readability >= 4.5; break; case "AAlarge": out = readability >= 3; break; case "AAAsmall": out = readability >= 7; break; } return out; }; // `mostReadable` // Given a base color and a list of possible foreground or background // colors for that base, returns the most readable color. // Optionally returns Black or White if the most readable color is unreadable. // *Example* // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:false}).toHexString(); // "#112255" // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:true}).toHexString(); // "#ffffff" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"large"}).toHexString(); // "#faf3f3" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"small"}).toHexString(); // "#ffffff" tinycolor.mostReadable = function(baseColor, colorList, args) { var bestColor = null; var bestScore = 0; var readability; var includeFallbackColors, level, size ; args = args || {}; includeFallbackColors = args.includeFallbackColors ; level = args.level; size = args.size; for (var i= 0; i < colorList.length ; i++) { readability = tinycolor.readability(baseColor, colorList[i]); if (readability > bestScore) { bestScore = readability; bestColor = tinycolor(colorList[i]); } } if (tinycolor.isReadable(baseColor, bestColor, {"level":level,"size":size}) || !includeFallbackColors) { return bestColor; } else { args.includeFallbackColors=false; return tinycolor.mostReadable(baseColor,["#fff", "#000"],args); } }; // Big List of Colors // ------------------ // var names = tinycolor.names = { aliceblue: "f0f8ff", antiquewhite: "faebd7", aqua: "0ff", aquamarine: "7fffd4", azure: "f0ffff", beige: "f5f5dc", bisque: "ffe4c4", black: "000", blanchedalmond: "ffebcd", blue: "00f", blueviolet: "8a2be2", brown: "a52a2a", burlywood: "deb887", burntsienna: "ea7e5d", cadetblue: "5f9ea0", chartreuse: "7fff00", chocolate: "d2691e", coral: "ff7f50", cornflowerblue: "6495ed", cornsilk: "fff8dc", crimson: "dc143c", cyan: "0ff", darkblue: "00008b", darkcyan: "008b8b", darkgoldenrod: "b8860b", darkgray: "a9a9a9", darkgreen: "006400", darkgrey: "a9a9a9", darkkhaki: "bdb76b", darkmagenta: "8b008b", darkolivegreen: "556b2f", darkorange: "ff8c00", darkorchid: "9932cc", darkred: "8b0000", darksalmon: "e9967a", darkseagreen: "8fbc8f", darkslateblue: "483d8b", darkslategray: "2f4f4f", darkslategrey: "2f4f4f", darkturquoise: "00ced1", darkviolet: "9400d3", deeppink: "ff1493", deepskyblue: "00bfff", dimgray: "696969", dimgrey: "696969", dodgerblue: "1e90ff", firebrick: "b22222", floralwhite: "fffaf0", forestgreen: "228b22", fuchsia: "f0f", gainsboro: "dcdcdc", ghostwhite: "f8f8ff", gold: "ffd700", goldenrod: "daa520", gray: "808080", green: "008000", greenyellow: "adff2f", grey: "808080", honeydew: "f0fff0", hotpink: "ff69b4", indianred: "cd5c5c", indigo: "4b0082", ivory: "fffff0", khaki: "f0e68c", lavender: "e6e6fa", lavenderblush: "fff0f5", lawngreen: "7cfc00", lemonchiffon: "fffacd", lightblue: "add8e6", lightcoral: "f08080", lightcyan: "e0ffff", lightgoldenrodyellow: "fafad2", lightgray: "d3d3d3", lightgreen: "90ee90", lightgrey: "d3d3d3", lightpink: "ffb6c1", lightsalmon: "ffa07a", lightseagreen: "20b2aa", lightskyblue: "87cefa", lightslategray: "789", lightslategrey: "789", lightsteelblue: "b0c4de", lightyellow: "ffffe0", lime: "0f0", limegreen: "32cd32", linen: "faf0e6", magenta: "f0f", maroon: "800000", mediumaquamarine: "66cdaa", mediumblue: "0000cd", mediumorchid: "ba55d3", mediumpurple: "9370db", mediumseagreen: "3cb371", mediumslateblue: "7b68ee", mediumspringgreen: "00fa9a", mediumturquoise: "48d1cc", mediumvioletred: "c71585", midnightblue: "191970", mintcream: "f5fffa", mistyrose: "ffe4e1", moccasin: "ffe4b5", navajowhite: "ffdead", navy: "000080", oldlace: "fdf5e6", olive: "808000", olivedrab: "6b8e23", orange: "ffa500", orangered: "ff4500", orchid: "da70d6", palegoldenrod: "eee8aa", palegreen: "98fb98", paleturquoise: "afeeee", palevioletred: "db7093", papayawhip: "ffefd5", peachpuff: "ffdab9", peru: "cd853f", pink: "ffc0cb", plum: "dda0dd", powderblue: "b0e0e6", purple: "800080", rebeccapurple: "663399", red: "f00", rosybrown: "bc8f8f", royalblue: "4169e1", saddlebrown: "8b4513", salmon: "fa8072", sandybrown: "f4a460", seagreen: "2e8b57", seashell: "fff5ee", sienna: "a0522d", silver: "c0c0c0", skyblue: "87ceeb", slateblue: "6a5acd", slategray: "708090", slategrey: "708090", snow: "fffafa", springgreen: "00ff7f", steelblue: "4682b4", tan: "d2b48c", teal: "008080", thistle: "d8bfd8", tomato: "ff6347", turquoise: "40e0d0", violet: "ee82ee", wheat: "f5deb3", white: "fff", whitesmoke: "f5f5f5", yellow: "ff0", yellowgreen: "9acd32" }; // Make it easy to access colors via `hexNames[hex]` var hexNames = tinycolor.hexNames = flip(names); // Utilities // --------- // `{ 'name1': 'val1' }` becomes `{ 'val1': 'name1' }` function flip(o) { var flipped = { }; for (var i in o) { if (o.hasOwnProperty(i)) { flipped[o[i]] = i; } } return flipped; } // Return a valid alpha value [0,1] with all invalid values being set to 1 function boundAlpha(a) { a = parseFloat(a); if (isNaN(a) || a < 0 || a > 1) { a = 1; } return a; } // Take input from [0, n] and return it as [0, 1] function bound01(n, max) { if (isOnePointZero(n)) { n = "100%"; } var processPercent = isPercentage(n); n = mathMin(max, mathMax(0, parseFloat(n))); // Automatically convert percentage into number if (processPercent) { n = parseInt(n * max, 10) / 100; } // Handle floating point rounding errors if ((Math.abs(n - max) < 0.000001)) { return 1; } // Convert into [0, 1] range if it isn't already return (n % max) / parseFloat(max); } // Force a number between 0 and 1 function clamp01(val) { return mathMin(1, mathMax(0, val)); } // Parse a base-16 hex value into a base-10 integer function parseIntFromHex(val) { return parseInt(val, 16); } // Need to handle 1.0 as 100%, since once it is a number, there is no difference between it and 1 // function isOnePointZero(n) { return typeof n == "string" && n.indexOf('.') != -1 && parseFloat(n) === 1; } // Check to see if string passed in is a percentage function isPercentage(n) { return typeof n === "string" && n.indexOf('%') != -1; } // Force a hex value to have 2 characters function pad2(c) { return c.length == 1 ? '0' + c : '' + c; } // Replace a decimal with it's percentage value function convertToPercentage(n) { if (n <= 1) { n = (n * 100) + "%"; } return n; } // Converts a decimal to a hex value function convertDecimalToHex(d) { return Math.round(parseFloat(d) * 255).toString(16); } // Converts a hex value to a decimal function convertHexToDecimal(h) { return (parseIntFromHex(h) / 255); } var matchers = (function() { // var CSS_INTEGER = "[-\\+]?\\d+%?"; // var CSS_NUMBER = "[-\\+]?\\d*\\.\\d+%?"; // Allow positive/negative integer/number. Don't capture the either/or, just the entire outcome. var CSS_UNIT = "(?:" + CSS_NUMBER + ")|(?:" + CSS_INTEGER + ")"; // Actual matching. // Parentheses and commas are optional, but not required. // Whitespace can take the place of commas or opening paren var PERMISSIVE_MATCH3 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; var PERMISSIVE_MATCH4 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; return { CSS_UNIT: new RegExp(CSS_UNIT), rgb: new RegExp("rgb" + PERMISSIVE_MATCH3), rgba: new RegExp("rgba" + PERMISSIVE_MATCH4), hsl: new RegExp("hsl" + PERMISSIVE_MATCH3), hsla: new RegExp("hsla" + PERMISSIVE_MATCH4), hsv: new RegExp("hsv" + PERMISSIVE_MATCH3), hsva: new RegExp("hsva" + PERMISSIVE_MATCH4), hex3: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex6: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/, hex4: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex8: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/ }; })(); // `isValidCSSUnit` // Take in a single string / number and check to see if it looks like a CSS unit // (see `matchers` above for definition). function isValidCSSUnit(color) { return !!matchers.CSS_UNIT.exec(color); } // `stringInputToObject` // Permissive string parsing. Take in a number of formats, and output an object // based on detected format. Returns `{ r, g, b }` or `{ h, s, l }` or `{ h, s, v}` function stringInputToObject(color) { color = color.replace(trimLeft,'').replace(trimRight, '').toLowerCase(); var named = false; if (names[color]) { color = names[color]; named = true; } else if (color == 'transparent') { return { r: 0, g: 0, b: 0, a: 0, format: "name" }; } // Try to match string input using regular expressions. // Keep most of the number bounding out of this function - don't worry about [0,1] or [0,100] or [0,360] // Just return an object and let the conversion functions handle that. // This way the result will be the same whether the tinycolor is initialized with string or object. var match; if ((match = matchers.rgb.exec(color))) { return { r: match[1], g: match[2], b: match[3] }; } if ((match = matchers.rgba.exec(color))) { return { r: match[1], g: match[2], b: match[3], a: match[4] }; } if ((match = matchers.hsl.exec(color))) { return { h: match[1], s: match[2], l: match[3] }; } if ((match = matchers.hsla.exec(color))) { return { h: match[1], s: match[2], l: match[3], a: match[4] }; } if ((match = matchers.hsv.exec(color))) { return { h: match[1], s: match[2], v: match[3] }; } if ((match = matchers.hsva.exec(color))) { return { h: match[1], s: match[2], v: match[3], a: match[4] }; } if ((match = matchers.hex8.exec(color))) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), a: convertHexToDecimal(match[4]), format: named ? "name" : "hex8" }; } if ((match = matchers.hex6.exec(color))) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), format: named ? "name" : "hex" }; } if ((match = matchers.hex4.exec(color))) { return { r: parseIntFromHex(match[1] + '' + match[1]), g: parseIntFromHex(match[2] + '' + match[2]), b: parseIntFromHex(match[3] + '' + match[3]), a: convertHexToDecimal(match[4] + '' + match[4]), format: named ? "name" : "hex8" }; } if ((match = matchers.hex3.exec(color))) { return { r: parseIntFromHex(match[1] + '' + match[1]), g: parseIntFromHex(match[2] + '' + match[2]), b: parseIntFromHex(match[3] + '' + match[3]), format: named ? "name" : "hex" }; } return false; } function validateWCAG2Parms(parms) { // return valid WCAG2 parms for isReadable. // If input parms are invalid, return {"level":"AA", "size":"small"} var level, size; parms = parms || {"level":"AA", "size":"small"}; level = (parms.level || "AA").toUpperCase(); size = (parms.size || "small").toLowerCase(); if (level !== "AA" && level !== "AAA") { level = "AA"; } if (size !== "small" && size !== "large") { size = "small"; } return {"level":level, "size":size}; } // Node: Export function if (module.exports) { module.exports = tinycolor; } // AMD/requirejs: Define the module else { window.tinycolor = tinycolor; } })(Math); }(tinycolor)); var tinyColor = tinycolor.exports; var colorStr2Hex = function colorStr2Hex(str) { return isNaN(str) ? parseInt(tinyColor(str).toHex(), 16) : str; }; var colorAlpha = function colorAlpha(str) { return isNaN(str) ? tinyColor(str).getAlpha() : 1; }; var autoColorScale = ordinal(schemePaired); // Autoset attribute colorField by colorByAccessor property // If an object has already a color, don't set it // Objects can be nodes or links function autoColorObjects(objects, colorByAccessor, colorField) { if (!colorByAccessor || typeof colorField !== 'string') return; objects.filter(function (obj) { return !obj[colorField]; }).forEach(function (obj) { obj[colorField] = autoColorScale(colorByAccessor(obj)); }); } function getDagDepths (_ref, idAccessor) { var nodes = _ref.nodes, links = _ref.links; var _ref2 = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}, _ref2$nodeFilter = _ref2.nodeFilter, nodeFilter = _ref2$nodeFilter === void 0 ? function () { return true; } : _ref2$nodeFilter, _ref2$onLoopError = _ref2.onLoopError, onLoopError = _ref2$onLoopError === void 0 ? function (loopIds) { throw "Invalid DAG structure! Found cycle in node path: ".concat(loopIds.join(' -> '), "."); } : _ref2$onLoopError; // linked graph var graph = {}; nodes.forEach(function (node) { return graph[idAccessor(node)] = { data: node, out: [], depth: -1, skip: !nodeFilter(node) }; }); links.forEach(function (_ref3) { var source = _ref3.source, target = _ref3.target; var sourceId = getNodeId(source); var targetId = getNodeId(target); if (!graph.hasOwnProperty(sourceId)) throw "Missing source node with id: ".concat(sourceId); if (!graph.hasOwnProperty(targetId)) throw "Missing target node with id: ".concat(targetId); var sourceNode = graph[sourceId]; var targetNode = graph[targetId]; sourceNode.out.push(targetNode); function getNodeId(node) { return _typeof(node) === 'object' ? idAccessor(node) : node; } }); var foundLoops = []; traverse(Object.values(graph)); var nodeDepths = Object.assign.apply(Object, [{}].concat(_toConsumableArray$2(Object.entries(graph).filter(function (_ref4) { var _ref5 = _slicedToArray$3(_ref4, 2), node = _ref5[1]; return !node.skip; }).map(function (_ref6) { var _ref7 = _slicedToArray$3(_ref6, 2), id = _ref7[0], node = _ref7[1]; return _defineProperty$1({}, id, node.depth); })))); return nodeDepths; function traverse(nodes) { var nodeStack = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; var currentDepth = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0; for (var i = 0, l = nodes.length; i < l; i++) { var node = nodes[i]; if (nodeStack.indexOf(node) !== -1) { var _ret = function () { var loop = [].concat(_toConsumableArray$2(nodeStack.slice(nodeStack.indexOf(node))), [node]).map(function (d) { return idAccessor(d.data); }); if (!foundLoops.some(function (foundLoop) { return foundLoop.length === loop.length && foundLoop.every(function (id, idx) { return id === loop[idx]; }); })) { foundLoops.push(loop); onLoopError(loop); } return "continue"; }(); if (_ret === "continue") continue; } if (currentDepth > node.depth) { // Don't unnecessarily revisit chunks of the graph node.depth = currentDepth; traverse(node.out, [].concat(_toConsumableArray$2(nodeStack), [node]), currentDepth + (node.skip ? 0 : 1)); } } } } var three$1 = window.THREE ? window.THREE // Prefer consumption from global THREE, if exists : { Group: three$2.Group, Mesh: three$2.Mesh, MeshLambertMaterial: three$2.MeshLambertMaterial, Color: three$2.Color, BufferGeometry: three$2.BufferGeometry, BufferAttribute: three$2.BufferAttribute, Matrix4: three$2.Matrix4, Vector3: three$2.Vector3, SphereBufferGeometry: three$2.SphereBufferGeometry, CylinderBufferGeometry: three$2.CylinderBufferGeometry, TubeBufferGeometry: three$2.TubeBufferGeometry, ConeBufferGeometry: three$2.ConeBufferGeometry, Line: three$2.Line, LineBasicMaterial: three$2.LineBasicMaterial, QuadraticBezierCurve3: three$2.QuadraticBezierCurve3, CubicBezierCurve3: three$2.CubicBezierCurve3, Box3: three$2.Box3 }; var ngraph = { graph: ngraph_graph, forcelayout: forcelayout }; var DAG_LEVEL_NODE_RATIO = 2; // support multiple method names for backwards threejs compatibility var setAttributeFn = new three$1.BufferGeometry().setAttribute ? 'setAttribute' : 'addAttribute'; var applyMatrix4Fn = new three$1.BufferGeometry().applyMatrix4 ? 'applyMatrix4' : 'applyMatrix'; var ForceGraph = index$2({ props: { jsonUrl: { onChange: function onChange(jsonUrl, state) { var _this = this; if (jsonUrl && !state.fetchingJson) { // Load data asynchronously state.fetchingJson = true; state.onLoading(); fetch(jsonUrl).then(function (r) { return r.json(); }).then(function (json) { state.fetchingJson = false; state.onFinishLoading(json); _this.graphData(json); }); } }, triggerUpdate: false }, graphData: { "default": { nodes: [], links: [] }, onChange: function onChange(graphData, state) { state.engineRunning = false; // Pause simulation immediately } }, numDimensions: { "default": 3, onChange: function onChange(numDim, state) { var chargeForce = state.d3ForceLayout.force('charge'); // Increase repulsion on 3D mode for improved spatial separation if (chargeForce) { chargeForce.strength(numDim > 2 ? -60 : -30); } if (numDim < 3) { eraseDimension(state.graphData.nodes, 'z'); } if (numDim < 2) { eraseDimension(state.graphData.nodes, 'y'); } function eraseDimension(nodes, dim) { nodes.forEach(function (d) { delete d[dim]; // position delete d["v".concat(dim)]; // velocity }); } } }, dagMode: { onChange: function onChange(dagMode, state) { // td, bu, lr, rl, zin, zout, radialin, radialout !dagMode && state.forceEngine === 'd3' && (state.graphData.nodes || []).forEach(function (n) { return n.fx = n.fy = n.fz = undefined; }); // unfix nodes when disabling dag mode } }, dagLevelDistance: {}, dagNodeFilter: { "default": function _default(node) { return true; } }, onDagError: { triggerUpdate: false }, nodeRelSize: { "default": 4 }, // volume per val unit nodeId: { "default": 'id' }, nodeVal: { "default": 'val' }, nodeResolution: { "default": 8 }, // how many slice segments in the sphere's circumference nodeColor: { "default": 'color' }, nodeAutoColorBy: {}, nodeOpacity: { "default": 0.75 }, nodeVisibility: { "default": true }, nodeThreeObject: {}, nodeThreeObjectExtend: { "default": false }, linkSource: { "default": 'source' }, linkTarget: { "default": 'target' }, linkVisibility: { "default": true }, linkColor: { "default": 'color' }, linkAutoColorBy: {}, linkOpacity: { "default": 0.2 }, linkWidth: {}, // Rounded to nearest decimal. For falsy values use dimensionless line with 1px regardless of distance. linkResolution: { "default": 6 }, // how many radial segments in each line tube's geometry linkCurvature: { "default": 0, triggerUpdate: false }, // line curvature radius (0: straight, 1: semi-circle) linkCurveRotation: { "default": 0, triggerUpdate: false }, // line curve rotation along the line axis (0: interection with XY plane, PI: upside down) linkMaterial: {}, linkThreeObject: {}, linkThreeObjectExtend: { "default": false }, linkPositionUpdate: { triggerUpdate: false }, // custom function to call for updating the link's position. Signature: (threeObj, { start: { x, y, z}, end: { x, y, z }}, link). If the function returns a truthy value, the regular link position update will not run. linkDirectionalArrowLength: { "default": 0 }, linkDirectionalArrowColor: {}, linkDirectionalArrowRelPos: { "default": 0.5, triggerUpdate: false }, // value between 0<>1 indicating the relative pos along the (exposed) line linkDirectionalArrowResolution: { "default": 8 }, // how many slice segments in the arrow's conic circumference linkDirectionalParticles: { "default": 0 }, // animate photons travelling in the link direction linkDirectionalParticleSpeed: { "default": 0.01, triggerUpdate: false }, // in link length ratio per frame linkDirectionalParticleWidth: { "default": 0.5 }, linkDirectionalParticleColor: {}, linkDirectionalParticleResolution: { "default": 4 }, // how many slice segments in the particle sphere's circumference forceEngine: { "default": 'd3' }, // d3 or ngraph d3AlphaMin: { "default": 0 }, d3AlphaDecay: { "default": 0.0228, triggerUpdate: false, onChange: function onChange(alphaDecay, state) { state.d3ForceLayout.alphaDecay(alphaDecay); } }, d3AlphaTarget: { "default": 0, triggerUpdate: false, onChange: function onChange(alphaTarget, state) { state.d3ForceLayout.alphaTarget(alphaTarget); } }, d3VelocityDecay: { "default": 0.4, triggerUpdate: false, onChange: function onChange(velocityDecay, state) { state.d3ForceLayout.velocityDecay(velocityDecay); } }, ngraphPhysics: { "default": { // defaults from https://github.com/anvaka/ngraph.physics.simulator/blob/master/index.js timeStep: 20, gravity: -1.2, theta: 0.8, springLength: 30, springCoefficient: 0.0008, dragCoefficient: 0.02 } }, warmupTicks: { "default": 0, triggerUpdate: false }, // how many times to tick the force engine at init before starting to render cooldownTicks: { "default": Infinity, triggerUpdate: false }, cooldownTime: { "default": 15000, triggerUpdate: false }, // ms onLoading: { "default": function _default() {}, triggerUpdate: false }, onFinishLoading: { "default": function _default() {}, triggerUpdate: false }, onUpdate: { "default": function _default() {}, triggerUpdate: false }, onFinishUpdate: { "default": function _default() {}, triggerUpdate: false }, onEngineTick: { "default": function _default() {}, triggerUpdate: false }, onEngineStop: { "default": function _default() {}, triggerUpdate: false } }, methods: { refresh: function refresh(state) { state._flushObjects = true; state._rerender(); return this; }, // Expose d3 forces for external manipulation d3Force: function d3Force(state, forceName, forceFn) { if (forceFn === undefined) { return state.d3ForceLayout.force(forceName); // Force getter } state.d3ForceLayout.force(forceName, forceFn); // Force setter return this; }, d3ReheatSimulation: function d3ReheatSimulation(state) { state.d3ForceLayout.alpha(1); this.resetCountdown(); return this; }, // reset cooldown state resetCountdown: function resetCountdown(state) { state.cntTicks = 0; state.startTickTime = new Date(); state.engineRunning = true; return this; }, tickFrame: function tickFrame(state) { var isD3Sim = state.forceEngine !== 'ngraph'; if (state.engineRunning) { layoutTick(); } updateArrows(); updatePhotons(); return this; // function layoutTick() { if (++state.cntTicks > state.cooldownTicks || new Date() - state.startTickTime > state.cooldownTime || isD3Sim && state.d3AlphaMin > 0 && state.d3ForceLayout.alpha() < state.d3AlphaMin) { state.engineRunning = false; // Stop ticking graph state.onEngineStop(); } else { state.layout[isD3Sim ? 'tick' : 'step'](); // Tick it state.onEngineTick(); } // Update nodes position state.graphData.nodes.forEach(function (node) { var obj = node.__threeObj; if (!obj) return; var pos = isD3Sim ? node : state.layout.getNodePosition(node[state.nodeId]); obj.position.x = pos.x; obj.position.y = pos.y || 0; obj.position.z = pos.z || 0; }); // Update links position var linkWidthAccessor = index$1(state.linkWidth); var linkCurvatureAccessor = index$1(state.linkCurvature); var linkCurveRotationAccessor = index$1(state.linkCurveRotation); var linkThreeObjectExtendAccessor = index$1(state.linkThreeObjectExtend); state.graphData.links.forEach(function (link) { var lineObj = link.__lineObj; if (!lineObj) return; var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link calcLinkCurve(link); // calculate link curve for all links, including custom replaced, so it can be used in directional functionality var extendedObj = linkThreeObjectExtendAccessor(link); if (state.linkPositionUpdate && state.linkPositionUpdate(extendedObj ? lineObj.children[1] : lineObj, // pass child custom object if extending the default { start: { x: start.x, y: start.y, z: start.z }, end: { x: end.x, y: end.y, z: end.z } }, link) && !extendedObj) { // exit if successfully custom updated position of non-extended obj return; } var curveResolution = 30; // # line segments var curve = link.__curve; // select default line obj if it's an extended group var line = lineObj.children.length ? lineObj.children[0] : lineObj; if (line.type === 'Line') { // Update line geometry if (!curve) { // straight line var linePos = line.geometry.getAttribute('position'); if (!linePos || !linePos.array || linePos.array.length !== 6) { line.geometry[setAttributeFn]('position', linePos = new three$1.BufferAttribute(new Float32Array(2 * 3), 3)); } linePos.array[0] = start.x; linePos.array[1] = start.y || 0; linePos.array[2] = start.z || 0; linePos.array[3] = end.x; linePos.array[4] = end.y || 0; linePos.array[5] = end.z || 0; linePos.needsUpdate = true; } else { // bezier curve line line.geometry.setFromPoints(curve.getPoints(curveResolution)); } line.geometry.computeBoundingSphere(); } else if (line.type === 'Mesh') { // Update cylinder geometry if (!curve) { // straight tube if (!line.geometry.type.match(/^Cylinder(Buffer)?Geometry$/)) { var linkWidth = Math.ceil(linkWidthAccessor(link) * 10) / 10; var r = linkWidth / 2; var geometry = new three$1.CylinderBufferGeometry(r, r, 1, state.linkResolution, 1, false); geometry[applyMatrix4Fn](new three$1.Matrix4().makeTranslation(0, 1 / 2, 0)); geometry[applyMatrix4Fn](new three$1.Matrix4().makeRotationX(Math.PI / 2)); line.geometry.dispose(); line.geometry = geometry; } var vStart = new three$1.Vector3(start.x, start.y || 0, start.z || 0); var vEnd = new three$1.Vector3(end.x, end.y || 0, end.z || 0); var distance = vStart.distanceTo(vEnd); line.position.x = vStart.x; line.position.y = vStart.y; line.position.z = vStart.z; line.scale.z = distance; line.parent.localToWorld(vEnd); // lookAt requires world coords line.lookAt(vEnd); } else { // curved tube if (!line.geometry.type.match(/^Tube(Buffer)?Geometry$/)) { // reset object positioning line.position.set(0, 0, 0); line.rotation.set(0, 0, 0); line.scale.set(1, 1, 1); } var _linkWidth = Math.ceil(linkWidthAccessor(link) * 10) / 10; var _r = _linkWidth / 2; var _geometry = new three$1.TubeBufferGeometry(curve, curveResolution, _r, state.linkResolution, false); line.geometry.dispose(); line.geometry = _geometry; } } }); // function calcLinkCurve(link) { var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var curvature = linkCurvatureAccessor(link); if (!curvature) { link.__curve = null; // Straight line } else { // bezier curve line (only for line types) var vStart = new three$1.Vector3(start.x, start.y || 0, start.z || 0); var vEnd = new three$1.Vector3(end.x, end.y || 0, end.z || 0); var l = vStart.distanceTo(vEnd); // line length var curve; var curveRotation = linkCurveRotationAccessor(link); if (l > 0) { var dx = end.x - start.x; var dy = end.y - start.y || 0; var vLine = new three$1.Vector3().subVectors(vEnd, vStart); var cp = vLine.clone().multiplyScalar(curvature).cross(dx !== 0 || dy !== 0 ? new three$1.Vector3(0, 0, 1) : new three$1.Vector3(0, 1, 0)) // avoid cross-product of parallel vectors (prefer Z, fallback to Y) .applyAxisAngle(vLine.normalize(), curveRotation) // rotate along line axis according to linkCurveRotation .add(new three$1.Vector3().addVectors(vStart, vEnd).divideScalar(2)); curve = new three$1.QuadraticBezierCurve3(vStart, cp, vEnd); } else { // Same point, draw a loop var d = curvature * 70; var endAngle = -curveRotation; // Rotate clockwise (from Z angle perspective) var startAngle = endAngle + Math.PI / 2; curve = new three$1.CubicBezierCurve3(vStart, new three$1.Vector3(d * Math.cos(startAngle), d * Math.sin(startAngle), 0).add(vStart), new three$1.Vector3(d * Math.cos(endAngle), d * Math.sin(endAngle), 0).add(vStart), vEnd); } link.__curve = curve; } } } function updateArrows() { // update link arrow position var arrowRelPosAccessor = index$1(state.linkDirectionalArrowRelPos); var arrowLengthAccessor = index$1(state.linkDirectionalArrowLength); var nodeValAccessor = index$1(state.nodeVal); state.graphData.links.forEach(function (link) { var arrowObj = link.__arrowObj; if (!arrowObj) return; var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var startR = Math.sqrt(Math.max(0, nodeValAccessor(start) || 1)) * state.nodeRelSize; var endR = Math.sqrt(Math.max(0, nodeValAccessor(end) || 1)) * state.nodeRelSize; var arrowLength = arrowLengthAccessor(link); var arrowRelPos = arrowRelPosAccessor(link); var getPosAlongLine = link.__curve ? function (t) { return link.__curve.getPoint(t); } // interpolate along bezier curve : function (t) { // straight line: interpolate linearly var iplt = function iplt(dim, start, end, t) { return start[dim] + (end[dim] - start[dim]) * t || 0; }; return { x: iplt('x', start, end, t), y: iplt('y', start, end, t), z: iplt('z', start, end, t) }; }; var lineLen = link.__curve ? link.__curve.getLength() : Math.sqrt(['x', 'y', 'z'].map(function (dim) { return Math.pow((end[dim] || 0) - (start[dim] || 0), 2); }).reduce(function (acc, v) { return acc + v; }, 0)); var posAlongLine = startR + arrowLength + (lineLen - startR - endR - arrowLength) * arrowRelPos; var arrowHead = getPosAlongLine(posAlongLine / lineLen); var arrowTail = getPosAlongLine((posAlongLine - arrowLength) / lineLen); ['x', 'y', 'z'].forEach(function (dim) { return arrowObj.position[dim] = arrowTail[dim]; }); var headVec = _construct(three$1.Vector3, _toConsumableArray$2(['x', 'y', 'z'].map(function (c) { return arrowHead[c]; }))); arrowObj.parent.localToWorld(headVec); // lookAt requires world coords arrowObj.lookAt(headVec); }); } function updatePhotons() { // update link particle positions var particleSpeedAccessor = index$1(state.linkDirectionalParticleSpeed); state.graphData.links.forEach(function (link) { var cyclePhotons = link.__photonsObj && link.__photonsObj.children; var singleHopPhotons = link.__singleHopPhotonsObj && link.__singleHopPhotonsObj.children; if ((!singleHopPhotons || !singleHopPhotons.length) && (!cyclePhotons || !cyclePhotons.length)) return; var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var particleSpeed = particleSpeedAccessor(link); var getPhotonPos = link.__curve ? function (t) { return link.__curve.getPoint(t); } // interpolate along bezier curve : function (t) { // straight line: interpolate linearly var iplt = function iplt(dim, start, end, t) { return start[dim] + (end[dim] - start[dim]) * t || 0; }; return { x: iplt('x', start, end, t), y: iplt('y', start, end, t), z: iplt('z', start, end, t) }; }; var photons = [].concat(_toConsumableArray$2(cyclePhotons || []), _toConsumableArray$2(singleHopPhotons || [])); photons.forEach(function (photon, idx) { var singleHop = photon.parent.__linkThreeObjType === 'singleHopPhotons'; if (!photon.hasOwnProperty('__progressRatio')) { photon.__progressRatio = singleHop ? 0 : idx / cyclePhotons.length; } photon.__progressRatio += particleSpeed; if (photon.__progressRatio >= 1) { if (!singleHop) { photon.__progressRatio = photon.__progressRatio % 1; } else { // remove particle photon.parent.remove(photon); emptyObject(photon); return; } } var photonPosRatio = photon.__progressRatio; var pos = getPhotonPos(photonPosRatio); ['x', 'y', 'z'].forEach(function (dim) { return photon.position[dim] = pos[dim]; }); }); }); } }, emitParticle: function emitParticle(state, link) { if (link) { if (!link.__singleHopPhotonsObj) { var obj = new three$1.Group(); obj.__linkThreeObjType = 'singleHopPhotons'; link.__singleHopPhotonsObj = obj; state.graphScene.add(obj); } var particleWidthAccessor = index$1(state.linkDirectionalParticleWidth); var photonR = Math.ceil(particleWidthAccessor(link) * 10) / 10 / 2; var numSegments = state.linkDirectionalParticleResolution; var particleGeometry = new three$1.SphereBufferGeometry(photonR, numSegments, numSegments); var linkColorAccessor = index$1(state.linkColor); var particleColorAccessor = index$1(state.linkDirectionalParticleColor); var photonColor = particleColorAccessor(link) || linkColorAccessor(link) || '#f0f0f0'; var materialColor = new three$1.Color(colorStr2Hex(photonColor)); var opacity = state.linkOpacity * 3; var particleMaterial = new three$1.MeshLambertMaterial({ color: materialColor, transparent: true, opacity: opacity }); // add a single hop particle link.__singleHopPhotonsObj.add(new three$1.Mesh(particleGeometry, particleMaterial)); } return this; }, getGraphBbox: function getGraphBbox(state) { var nodeFilter = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : function () { return true; }; if (!state.initialised) return null; // recursively collect all nested geometries bboxes var bboxes = function getBboxes(obj) { var bboxes = []; if (obj.geometry) { obj.geometry.computeBoundingBox(); var box = new three$1.Box3(); box.copy(obj.geometry.boundingBox).applyMatrix4(obj.matrixWorld); bboxes.push(box); } return bboxes.concat.apply(bboxes, _toConsumableArray$2((obj.children || []).filter(function (obj) { return !obj.hasOwnProperty('__graphObjType') || obj.__graphObjType === 'node' && nodeFilter(obj.__data); } // exclude filtered out nodes ).map(getBboxes))); }(state.graphScene); if (!bboxes.length) return null; // extract global x,y,z min/max return Object.assign.apply(Object, _toConsumableArray$2(['x', 'y', 'z'].map(function (c) { return _defineProperty$1({}, c, [min(bboxes, function (bb) { return bb.min[c]; }), max(bboxes, function (bb) { return bb.max[c]; })]); }))); } }, stateInit: function stateInit() { return { d3ForceLayout: d3ForceSimulation().force('link', d3ForceLink()).force('charge', d3ForceManyBody()).force('center', d3ForceCenter()).force('dagRadial', null).stop(), engineRunning: false }; }, init: function init(threeObj, state) { // Main three object to manipulate state.graphScene = threeObj; }, update: function update(state, changedProps) { var hasAnyPropChanged = function hasAnyPropChanged(propList) { return propList.some(function (p) { return changedProps.hasOwnProperty(p); }); }; state.engineRunning = false; // pause simulation state.onUpdate(); if (state.nodeAutoColorBy !== null && hasAnyPropChanged(['nodeAutoColorBy', 'graphData', 'nodeColor'])) { // Auto add color to uncolored nodes autoColorObjects(state.graphData.nodes, index$1(state.nodeAutoColorBy), state.nodeColor); } if (state.linkAutoColorBy !== null && hasAnyPropChanged(['linkAutoColorBy', 'graphData', 'linkColor'])) { // Auto add color to uncolored links autoColorObjects(state.graphData.links, index$1(state.linkAutoColorBy), state.linkColor); } // Digest nodes WebGL objects if (state._flushObjects || hasAnyPropChanged(['graphData', 'nodeThreeObject', 'nodeThreeObjectExtend', 'nodeVal', 'nodeColor', 'nodeVisibility', 'nodeRelSize', 'nodeResolution', 'nodeOpacity'])) { var customObjectAccessor = index$1(state.nodeThreeObject); var customObjectExtendAccessor = index$1(state.nodeThreeObjectExtend); var valAccessor = index$1(state.nodeVal); var colorAccessor = index$1(state.nodeColor); var visibilityAccessor = index$1(state.nodeVisibility); var sphereGeometries = {}; // indexed by node value var sphereMaterials = {}; // indexed by color threeDigest(state.graphData.nodes.filter(visibilityAccessor), state.graphScene, { purge: state._flushObjects || hasAnyPropChanged([// recreate objects if any of these props have changed 'nodeThreeObject', 'nodeThreeObjectExtend']), objFilter: function objFilter(obj) { return obj.__graphObjType === 'node'; }, createObj: function createObj(node) { var customObj = customObjectAccessor(node); var extendObj = customObjectExtendAccessor(node); if (customObj && state.nodeThreeObject === customObj) { // clone object if it's a shared object among all nodes customObj = customObj.clone(); } var obj; if (customObj && !extendObj) { obj = customObj; } else { // Add default object (sphere mesh) obj = new three$1.Mesh(); obj.__graphDefaultObj = true; if (customObj && extendObj) { obj.add(customObj); // extend default with custom } } obj.__graphObjType = 'node'; // Add object type return obj; }, updateObj: function updateObj(obj, node) { if (obj.__graphDefaultObj) { // bypass internal updates for custom node objects var val = valAccessor(node) || 1; var radius = Math.cbrt(val) * state.nodeRelSize; var numSegments = state.nodeResolution; if (!obj.geometry.type.match(/^Sphere(Buffer)?Geometry$/) || obj.geometry.parameters.radius !== radius || obj.geometry.parameters.widthSegments !== numSegments) { if (!sphereGeometries.hasOwnProperty(val)) { sphereGeometries[val] = new three$1.SphereBufferGeometry(radius, numSegments, numSegments); } obj.geometry.dispose(); obj.geometry = sphereGeometries[val]; } var color = colorAccessor(node); var materialColor = new three$1.Color(colorStr2Hex(color || '#ffffaa')); var opacity = state.nodeOpacity * colorAlpha(color); if (obj.material.type !== 'MeshLambertMaterial' || !obj.material.color.equals(materialColor) || obj.material.opacity !== opacity) { if (!sphereMaterials.hasOwnProperty(color)) { sphereMaterials[color] = new three$1.MeshLambertMaterial({ color: materialColor, transparent: true, opacity: opacity }); } obj.material.dispose(); obj.material = sphereMaterials[color]; } } } }); } // Digest links WebGL objects if (state._flushObjects || hasAnyPropChanged(['graphData', 'linkThreeObject', 'linkThreeObjectExtend', 'linkMaterial', 'linkColor', 'linkWidth', 'linkVisibility', 'linkResolution', 'linkOpacity', 'linkDirectionalArrowLength', 'linkDirectionalArrowColor', 'linkDirectionalArrowResolution', 'linkDirectionalParticles', 'linkDirectionalParticleWidth', 'linkDirectionalParticleColor', 'linkDirectionalParticleResolution'])) { var _customObjectAccessor = index$1(state.linkThreeObject); var _customObjectExtendAccessor = index$1(state.linkThreeObjectExtend); var customMaterialAccessor = index$1(state.linkMaterial); var _visibilityAccessor = index$1(state.linkVisibility); var _colorAccessor = index$1(state.linkColor); var widthAccessor = index$1(state.linkWidth); var cylinderGeometries = {}; // indexed by link width var lambertLineMaterials = {}; // for cylinder objects, indexed by link color var basicLineMaterials = {}; // for line objects, indexed by link color var visibleLinks = state.graphData.links.filter(_visibilityAccessor); // lines digest cycle threeDigest(visibleLinks, state.graphScene, { objBindAttr: '__lineObj', purge: state._flushObjects || hasAnyPropChanged([// recreate objects if any of these props have changed 'linkThreeObject', 'linkThreeObjectExtend', 'linkWidth']), objFilter: function objFilter(obj) { return obj.__graphObjType === 'link'; }, createObj: function createObj(link) { var customObj = _customObjectAccessor(link); var extendObj = _customObjectExtendAccessor(link); if (customObj && state.linkThreeObject === customObj) { // clone object if it's a shared object among all links customObj = customObj.clone(); } var defaultObj; if (!customObj || extendObj) { // construct default line obj var useCylinder = !!widthAccessor(link); if (useCylinder) { defaultObj = new three$1.Mesh(); } else { // Use plain line (constant width) var lineGeometry = new three$1.BufferGeometry(); lineGeometry[setAttributeFn]('position', new three$1.BufferAttribute(new Float32Array(2 * 3), 3)); defaultObj = new three$1.Line(lineGeometry); } } var obj; if (!customObj) { obj = defaultObj; obj.__graphDefaultObj = true; } else { if (!extendObj) { // use custom object obj = customObj; } else { // extend default with custom in a group obj = new three$1.Group(); obj.__graphDefaultObj = true; obj.add(defaultObj); obj.add(customObj); } } obj.renderOrder = 10; // Prevent visual glitches of dark lines on top of nodes by rendering them last obj.__graphObjType = 'link'; // Add object type return obj; }, updateObj: function updateObj(updObj, link) { if (updObj.__graphDefaultObj) { // bypass internal updates for custom link objects // select default object if it's an extended group var obj = updObj.children.length ? updObj.children[0] : updObj; var linkWidth = Math.ceil(widthAccessor(link) * 10) / 10; var useCylinder = !!linkWidth; if (useCylinder) { var r = linkWidth / 2; var numSegments = state.linkResolution; if (!obj.geometry.type.match(/^Cylinder(Buffer)?Geometry$/) || obj.geometry.parameters.radiusTop !== r || obj.geometry.parameters.radialSegments !== numSegments) { if (!cylinderGeometries.hasOwnProperty(linkWidth)) { var geometry = new three$1.CylinderBufferGeometry(r, r, 1, numSegments, 1, false); geometry[applyMatrix4Fn](new three$1.Matrix4().makeTranslation(0, 1 / 2, 0)); geometry[applyMatrix4Fn](new three$1.Matrix4().makeRotationX(Math.PI / 2)); cylinderGeometries[linkWidth] = geometry; } obj.geometry.dispose(); obj.geometry = cylinderGeometries[linkWidth]; } } var customMaterial = customMaterialAccessor(link); if (customMaterial) { obj.material = customMaterial; } else { var color = _colorAccessor(link); var materialColor = new three$1.Color(colorStr2Hex(color || '#f0f0f0')); var opacity = state.linkOpacity * colorAlpha(color); var materialType = useCylinder ? 'MeshLambertMaterial' : 'LineBasicMaterial'; if (obj.material.type !== materialType || !obj.material.color.equals(materialColor) || obj.material.opacity !== opacity) { var lineMaterials = useCylinder ? lambertLineMaterials : basicLineMaterials; if (!lineMaterials.hasOwnProperty(color)) { lineMaterials[color] = new three$1[materialType]({ color: materialColor, transparent: opacity < 1, opacity: opacity, depthWrite: opacity >= 1 // Prevent transparency issues }); } obj.material.dispose(); obj.material = lineMaterials[color]; } } } } }); // Arrows digest cycle if (state.linkDirectionalArrowLength || changedProps.hasOwnProperty('linkDirectionalArrowLength')) { var arrowLengthAccessor = index$1(state.linkDirectionalArrowLength); var arrowColorAccessor = index$1(state.linkDirectionalArrowColor); threeDigest(visibleLinks.filter(arrowLengthAccessor), state.graphScene, { objBindAttr: '__arrowObj', objFilter: function objFilter(obj) { return obj.__linkThreeObjType === 'arrow'; }, createObj: function createObj() { var obj = new three$1.Mesh(undefined, new three$1.MeshLambertMaterial({ transparent: true })); obj.__linkThreeObjType = 'arrow'; // Add object type return obj; }, updateObj: function updateObj(obj, link) { var arrowLength = arrowLengthAccessor(link); var numSegments = state.linkDirectionalArrowResolution; if (!obj.geometry.type.match(/^Cone(Buffer)?Geometry$/) || obj.geometry.parameters.height !== arrowLength || obj.geometry.parameters.radialSegments !== numSegments) { var coneGeometry = new three$1.ConeBufferGeometry(arrowLength * 0.25, arrowLength, numSegments); // Correct orientation coneGeometry.translate(0, arrowLength / 2, 0); coneGeometry.rotateX(Math.PI / 2); obj.geometry.dispose(); obj.geometry = coneGeometry; } obj.material.color = new three$1.Color(arrowColorAccessor(link) || _colorAccessor(link) || '#f0f0f0'); obj.material.opacity = state.linkOpacity * 3; } }); } // Photon particles digest cycle if (state.linkDirectionalParticles || changedProps.hasOwnProperty('linkDirectionalParticles')) { var particlesAccessor = index$1(state.linkDirectionalParticles); var particleWidthAccessor = index$1(state.linkDirectionalParticleWidth); var particleColorAccessor = index$1(state.linkDirectionalParticleColor); var particleMaterials = {}; // indexed by link color var particleGeometries = {}; // indexed by particle width threeDigest(visibleLinks.filter(particlesAccessor), state.graphScene, { objBindAttr: '__photonsObj', objFilter: function objFilter(obj) { return obj.__linkThreeObjType === 'photons'; }, createObj: function createObj() { var obj = new three$1.Group(); obj.__linkThreeObjType = 'photons'; // Add object type return obj; }, updateObj: function updateObj(obj, link) { var numPhotons = Math.round(Math.abs(particlesAccessor(link))); var curPhoton = !!obj.children.length && obj.children[0]; var photonR = Math.ceil(particleWidthAccessor(link) * 10) / 10 / 2; var numSegments = state.linkDirectionalParticleResolution; var particleGeometry; if (curPhoton && curPhoton.geometry.parameters.radius === photonR && curPhoton.geometry.parameters.widthSegments === numSegments) { particleGeometry = curPhoton.geometry; } else { if (!particleGeometries.hasOwnProperty(photonR)) { particleGeometries[photonR] = new three$1.SphereBufferGeometry(photonR, numSegments, numSegments); } particleGeometry = particleGeometries[photonR]; curPhoton && curPhoton.geometry.dispose(); } var photonColor = particleColorAccessor(link) || _colorAccessor(link) || '#f0f0f0'; var materialColor = new three$1.Color(colorStr2Hex(photonColor)); var opacity = state.linkOpacity * 3; var particleMaterial; if (curPhoton && curPhoton.material.color.equals(materialColor) && curPhoton.material.opacity === opacity) { particleMaterial = curPhoton.material; } else { if (!particleMaterials.hasOwnProperty(photonColor)) { particleMaterials[photonColor] = new three$1.MeshLambertMaterial({ color: materialColor, transparent: true, opacity: opacity }); } particleMaterial = particleMaterials[photonColor]; curPhoton && curPhoton.material.dispose(); } // digest cycle for each photon threeDigest(_toConsumableArray$2(new Array(numPhotons)).map(function (_, idx) { return { idx: idx }; }), obj, { idAccessor: function idAccessor(d) { return d.idx; }, createObj: function createObj() { return new three$1.Mesh(particleGeometry, particleMaterial); }, updateObj: function updateObj(obj) { obj.geometry = particleGeometry; obj.material = particleMaterial; } }); } }); } } state._flushObjects = false; // reset objects refresh flag // simulation engine if (hasAnyPropChanged(['graphData', 'nodeId', 'linkSource', 'linkTarget', 'numDimensions', 'forceEngine', 'dagMode', 'dagNodeFilter', 'dagLevelDistance'])) { state.engineRunning = false; // Pause simulation // parse links state.graphData.links.forEach(function (link) { link.source = link[state.linkSource]; link.target = link[state.linkTarget]; }); // Feed data to force-directed layout var isD3Sim = state.forceEngine !== 'ngraph'; var layout; if (isD3Sim) { // D3-force (layout = state.d3ForceLayout).stop().alpha(1) // re-heat the simulation .numDimensions(state.numDimensions).nodes(state.graphData.nodes); // add links (if link force is still active) var linkForce = state.d3ForceLayout.force('link'); if (linkForce) { linkForce.id(function (d) { return d[state.nodeId]; }).links(state.graphData.links); } // setup dag force constraints var nodeDepths = state.dagMode && getDagDepths(state.graphData, function (node) { return node[state.nodeId]; }, { nodeFilter: state.dagNodeFilter, onLoopError: state.onDagError || undefined }); var maxDepth = Math.max.apply(Math, _toConsumableArray$2(Object.values(nodeDepths || []))); var dagLevelDistance = state.dagLevelDistance || state.graphData.nodes.length / (maxDepth || 1) * DAG_LEVEL_NODE_RATIO * (['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? 0.7 : 1); // Fix nodes to x,y,z for dag mode if (state.dagMode) { var getFFn = function getFFn(fix, invert) { return function (node) { return !fix ? undefined : (nodeDepths[node[state.nodeId]] - maxDepth / 2) * dagLevelDistance * (invert ? -1 : 1); }; }; var fxFn = getFFn(['lr', 'rl'].indexOf(state.dagMode) !== -1, state.dagMode === 'rl'); var fyFn = getFFn(['td', 'bu'].indexOf(state.dagMode) !== -1, state.dagMode === 'td'); var fzFn = getFFn(['zin', 'zout'].indexOf(state.dagMode) !== -1, state.dagMode === 'zout'); state.graphData.nodes.filter(state.dagNodeFilter).forEach(function (node) { node.fx = fxFn(node); node.fy = fyFn(node); node.fz = fzFn(node); }); } // Use radial force for radial dags state.d3ForceLayout.force('dagRadial', ['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? d3ForceRadial(function (node) { var nodeDepth = nodeDepths[node[state.nodeId]] || -1; return (state.dagMode === 'radialin' ? maxDepth - nodeDepth : nodeDepth) * dagLevelDistance; }).strength(function (node) { return state.dagNodeFilter(node) ? 1 : 0; }) : null); } else { // ngraph var _graph = ngraph.graph(); state.graphData.nodes.forEach(function (node) { _graph.addNode(node[state.nodeId]); }); state.graphData.links.forEach(function (link) { _graph.addLink(link.source, link.target); }); layout = ngraph.forcelayout(_graph, _objectSpread2$1({ dimensions: state.numDimensions }, state.ngraphPhysics)); layout.graph = _graph; // Attach graph reference to layout } for (var i = 0; i < state.warmupTicks && !(isD3Sim && state.d3AlphaMin > 0 && state.d3ForceLayout.alpha() < state.d3AlphaMin); i++) { layout[isD3Sim ? "tick" : "step"](); } // Initial ticks before starting to render state.layout = layout; this.resetCountdown(); } state.engineRunning = true; // resume simulation state.onFinishUpdate(); } }); function fromKapsule (kapsule) { var baseClass = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : Object; var initKapsuleWithSelf = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : false; var FromKapsule = /*#__PURE__*/function (_baseClass) { _inherits(FromKapsule, _baseClass); var _super = _createSuper(FromKapsule); function FromKapsule() { var _this; _classCallCheck$1(this, FromKapsule); for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } _this = _super.call.apply(_super, [this].concat(args)); _this.__kapsuleInstance = kapsule().apply(void 0, [].concat(_toConsumableArray$2(initKapsuleWithSelf ? [_assertThisInitialized(_this)] : []), args)); return _this; } return FromKapsule; }(baseClass); // attach kapsule props/methods to class prototype Object.keys(kapsule()).forEach(function (m) { return FromKapsule.prototype[m] = function () { var _this$__kapsuleInstan; var returnVal = (_this$__kapsuleInstan = this.__kapsuleInstance)[m].apply(_this$__kapsuleInstan, arguments); return returnVal === this.__kapsuleInstance ? this // chain based on this class, not the kapsule obj : returnVal; }; }); return FromKapsule; } var three = window.THREE ? window.THREE : { Group: three$2.Group }; // Prefer consumption from global THREE, if exists var threeForcegraph = fromKapsule(ForceGraph, three.Group, true); return threeForcegraph; }))); //# sourceMappingURL=three-forcegraph.js.map