123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- import FunctionNode from '../core/FunctionNode.js';
- import { pow2 } from './MathFunctions.js';
- export const F_Schlick = new FunctionNode( `
- vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {
- // Original approximation by Christophe Schlick '94
- // float fresnel = pow( 1.0 - dotVH, 5.0 );
- // Optimized variant (presented by Epic at SIGGRAPH '13)
- // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
- float fresnel = exp2( ( -5.55473 * dotVH - 6.98316 ) * dotVH );
- return ( f90 - f0 ) * fresnel + f0;
- }` ); // validated
- export const G_BlinnPhong_Implicit = new FunctionNode( `
- float G_BlinnPhong_Implicit() {
- // ( const in float dotNL, const in float dotNV )
- // geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v)
- return 0.25;
- }` ); // validated
- export const BRDF_Lambert = new FunctionNode( `
- vec3 BRDF_Lambert( const in vec3 diffuseColor ) {
- return RECIPROCAL_PI * diffuseColor;
- }` ); // validated
- export const getDistanceAttenuation = new FunctionNode( `
- float getDistanceAttenuation( float lightDistance, float cutoffDistance, float decayExponent ) {
- #if defined ( PHYSICALLY_CORRECT_LIGHTS )
- // based upon Frostbite 3 Moving to Physically-based Rendering
- // page 32, equation 26: E[window1]
- // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
- float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );
- if( cutoffDistance > 0.0 ) {
- distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );
- }
- return distanceFalloff;
- #else
- if( cutoffDistance > 0.0 && decayExponent > 0.0 ) {
- return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );
- }
- return 1.0;
- #endif
- }` ).setIncludes( [ pow2 ] );
- //
- // STANDARD
- //
- // Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2
- // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
- export const V_GGX_SmithCorrelated = new FunctionNode( `
- float V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {
- float a2 = pow2( alpha );
- float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
- float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );
- return 0.5 / max( gv + gl, EPSILON );
- }` ).setIncludes( [ pow2 ] );
- // Microfacet Models for Refraction through Rough Surfaces - equation (33)
- // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
- // alpha is "roughness squared" in Disney’s reparameterization
- export const D_GGX = new FunctionNode( `
- float D_GGX( const in float alpha, const in float dotNH ) {
- float a2 = pow2( alpha );
- float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1
- return RECIPROCAL_PI * a2 / pow2( denom );
- }` ).setIncludes( [ pow2 ] );
- // GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility
- export const BRDF_Specular_GGX = new FunctionNode( `
- vec3 BRDF_Specular_GGX( vec3 lightDirection, const in vec3 f0, const in float f90, const in float roughness ) {
- float alpha = pow2( roughness ); // UE4's roughness
- vec3 halfDir = normalize( lightDirection + PositionViewDirection );
- float dotNL = saturate( dot( TransformedNormalView, lightDirection ) );
- float dotNV = saturate( dot( TransformedNormalView, PositionViewDirection ) );
- float dotNH = saturate( dot( TransformedNormalView, halfDir ) );
- float dotVH = saturate( dot( PositionViewDirection, halfDir ) );
- vec3 F = F_Schlick( f0, f90, dotVH );
- float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );
- float D = D_GGX( alpha, dotNH );
- return F * ( V * D );
- }` ).setIncludes( [ pow2, F_Schlick, V_GGX_SmithCorrelated, D_GGX ] ); // validated
- export const RE_Direct_Physical = new FunctionNode( `
- void RE_Direct_Physical( inout ReflectedLight reflectedLight, vec3 lightDirection, vec3 lightColor ) {
- float dotNL = saturate( dot( TransformedNormalView, lightDirection ) );
- vec3 irradiance = dotNL * lightColor;
- #ifndef PHYSICALLY_CORRECT_LIGHTS
- irradiance *= PI; // punctual light
- #endif
- reflectedLight.directDiffuse += irradiance * BRDF_Lambert( MaterialDiffuseColor.rgb );
- reflectedLight.directSpecular += irradiance * BRDF_Specular_GGX( lightDirection, MaterialSpecularTint, 1.0, MaterialRoughness );
- }` ).setIncludes( [ BRDF_Lambert, BRDF_Specular_GGX ] );
- export const PhysicalLightingModel = new FunctionNode( `
- void ( inout ReflectedLight reflectedLight, vec3 lightDirection, vec3 lightColor ) {
- RE_Direct_Physical( reflectedLight, lightDirection, lightColor );
- }` ).setIncludes( [ RE_Direct_Physical ] );
- // utils
- // Trowbridge-Reitz distribution to Mip level, following the logic of http://casual-effects.blogspot.ca/2011/08/plausible-environment-lighting-in-two.html
- export const getSpecularMIPLevel = new FunctionNode( `
- float ( const in float roughness, const in float maxMIPLevelScalar ) {
- float sigma = PI * roughness * roughness / ( 1.0 + roughness );
- float desiredMIPLevel = maxMIPLevelScalar + log2( sigma );
- // clamp to allowable LOD ranges.
- return clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );
- }` );
|